45-Year Old Nixie Calculator Turned UDP Server

In this beautiful and well-documented reverse engineering feat of strength, [Eric Cohen] reverse-engineered a 1971 Singer calculator to gain control of the fabulous Nixie tubes inside. Where a lesser hacker would have simply pulled the tubes out and put them in a more modern housing, [Eric] kept it all intact.

Not even content to gut the box and toss some modern brains inside, he snooped out the calculator’s internal wiring, interfaced a Raspberry Pi to it, and overrode the calculator’s (860 Hz) bus system. With the Pi on the inside, controlling the Nixie tubes, he did what any of us would do: set up a UDP server and write an Android app for his phone to push ASCII data over to the former calculator. When it’s not running in its default clock mode, naturally.

nixie-internals

All of this is extraordinarily well documented both on his website, in a slide presentation (PDF), and in video (embedded below). Our hats are tipped to the amazing attention to detail and fantastic documentation.

Now where is that Singer EC1117 calculator from 1971 that we’ve been saving for just such an occasion?

Continue reading “45-Year Old Nixie Calculator Turned UDP Server”

Two Great Radios Taste Great Together

[Johan Kanflo] sent us his latest recipe: a blend of one part RFM69 sub-gigahertz radio transceiver with one part ESP8266 module. The resulting dish looks absolutely delicious!

We’re all charmed with the ease of use that the ESP8266 brings to the table — plug it in and you’re talking to your existing WiFi network — but we hate the power consumption for battery-powered applications. WiFi is a power hog. And although ISM-band radio modules make point-to-point communications cheap and power-saving, getting them to talk with your computer takes an adapter.

So [Johan] combined the two radios and made a sweet ISM-radio-to-WiFi bridge. His demo application takes whatever data is sent over the ISM band and pushes it to an MQTT broker on his WiFi network. Hardware and firmware are up on GitHub.

We’ve been wanting a device like this for our home network for a while now. Kudos, [Johan] for making it so easy!

Government Drones To Toss M&Ms To Prarie Dogs

We hear a lot about drone surveillance, drone package delivery, drone this, and drone that. Honestly, though, the best use of drones has been taking cool aerial videos and posting them online. Until now.

The US Fish and Wildlife Service plans to cover acres upon acres of prairie-dog habitat with vaccine-laced, peanut-butter coated M&Ms. The snacks also include a dye that will show up in the whiskers of prairie dogs that take the bait, allowing scientists to assess the efficacy of the program. And this is all in the name of saving endangered black-footed ferrets which share burrows with the prairie dogs. It seems they were getting the plague from the prairie dogs.

The quads are outfitted with a “glorified gumball machine” that spreads the vaccine tidbits around. Why a quad? They can cover more space with less disruption to the animals’ habitat. That’s a great application in our book.

But if you think this is a case of the USF&WS showing outrageous innovation, consider the way rabies was all but eliminated in Europe: throwing hundreds of thousands of vaccine-doped chicken heads out of helicopters across France, Switzerland, and Germany. You couldn’t make this up.

(Via [Popular Science], where the title is even more clickbaity than ours. Get it? “Clickbait”?)

Headline image: US Fish and Wildlife Service Mountain-Prairie

A Very Modern Turing Machine Build

Mathematicians. If you let them use the concept of infinity, there’s almost nothing they won’t be able to prove. Case in point: the Turing machine. The idea is that with an infinite length of tape, one could build a thought-experiment machine with only a few instructions that should be able to compute anything that’s computable.

[Igor]’s Turing machine is one of the nicest we’ve ever seen built. The “tape” is significantly shorter than infinity, which limits the computations he can achieve, the use of 3D printing, electric contacts, and WS2812 RGB LEDs for the tape are profoundly satisfying.

A bit on the tape is portrayed as unused if the LED is off, zero if it is red, and one if it is green. Each station on the tape is indexed by a set of blue LEDs observed by the gantry of the writing head which uses a 3D printed finger and motor to change the state of each bit. Programs are stored on a home-built punch card, which gets extra geek points from us.

Watch it run through “busy beaver” (embedded below) and tell us that it’s not awesome, even if it is a couple of LEDs short of infinity.

Continue reading “A Very Modern Turing Machine Build”

Micropython Binaries For The ESP8266 To Be Released

MicroPython is a Kickstarted project that brings Python to small, embeddable devices. As part of the terms of the Kickstarter, supporters were to get exclusive access to binary builds, with a few exceptions. Now it looks like the ESP8266-version is going to be added to the binary list. This is awesome news for anyone who enjoys playing around with the popular WiFi chip.

But even more heartwarming is the overwhelming response of the Kickstarter’s backers for making the binary builds public. Basically everyone was in favor of opening the binaries up to the general public, and many wrote that they wanted public binaries all along. People can be so giving.

But there’s also something in it for them! The more people get behind MicroPython, the more (free and paid) development support it will warrant, and the more bug reports it will garner. Wins all around. So keep clicking refresh on the binary list until you see it live. Or better yet, if you’re interested, head over to the forum. (Or just wait for us to cover it here. You know we will.)

The Dubious Claim Of A World Helium Shortage

If you’ve been reading the news lately, you doubtless read about the find of a really big new helium gas field in Tanzania. It’s being touted as “life-saving” and “game-changing” in the popular media, but this is all spin. Helium is important for balloon animals, scientists, and MRI machines alike, but while it’s certainly true that helium prices have been rising steadily since 2000, this new field is unlikely to matter all that much in the grand scheme of things.

helium_uses
Source: USGS

The foundation of every news story on helium is that we’re running out of the stuff. As with most doomsday scenarios, the end of the world’s supply of helium is overstated, and we don’t just mean in light of the new Tanzanian field. Helium is the second-most abundant element, making up 24% of the total mass of the universe. And while the earth has a disproportionate amount of heavier elements, helium is in rocks everywhere. It’s just a question of getting it out, and at what price that’s viable.

So while we’re stoked that the era of (relatively) cheap helium can continue onwards for a few more years, we’re still pretty certain that the price is going to continue to rise, and our children’s children won’t be using the stuff for something so frivolous as blowing up party balloons — it’ll be used primarily, as it is now, where it’s more valuable: in science, medicine, and industry.

Let’s take this moment to reflect on the economics of second-lightest element. Here’s to you, Helium!

Continue reading “The Dubious Claim Of A World Helium Shortage”

Put A Reverse Engineered Power Meter In Your Toolkit

It seems that one can buy cheap power meters online and, well, that’s it. They work just fine, but to use them for anything else (like datalogging or control or…) they need a bit more work. The good news is that [Thomas Scherrer], alias [OZ2CPU], just did that reverse engineering work for us.

Inside these budget power meters, you’ll find an LCD driver, a power-monitoring chip, and an STM32F030, which is a low-costĀ ARM Cortex M0 chip that’s fun to play with on its own. [Thomas] traced out the SPI lines that the power-monitoring chip uses to talk to the microcontroller and broke in to snoop on the signals. Once he got an understanding of all the data, tossing an ATmega88 chip on the SPI line lets him exfiltrate it over a convenient asynchronous serial interface.

If you’re going to do this hack yourself, you should note that the internals of the power meter run at line voltage — the 3.3 V that powers the microcontroller floats on top of the 230 V coming out of [Thomas]’s wall plug. He took the necessary precautions with an isolation transformer while testing the device, and didn’t get shocked. That means that to get the serial data out, you’ll need to use optoisolation (or radio!) on the serial lines.

Now that we know how this thing works on the inside, it’s open-season for power-management hacks. Toss a mains socket and an ESP8266 in a box and you’ve got a WiFi-logging power meter that you can use anywhere, all for under $20. Sweet.