Hackers Want Cambridge Dictionary To Change Their Definition

Maybe it’s the silly season of high summer, or maybe a PR bunny at a cybersecurity company has simply hit the jackpot with a story syndicated by the Press Association, but the non-tech media has been earnestly talking about a call upon the Cambridge Dictionary to remove the word “illegal” from their definition of “Hacker”. The weighty tome from the famous British university lists the word as either “a person who is skilled in the use of computer systems, often one who illegally obtains access to private computer systems:” in its learners dictionary, or as “someone who illegally uses a computer to access information stored on another computer system or to spread a computer virus” in its academic dictionary. The cybersecurity company in question argues that hackers in fact do a lot of the work that improves cybersecurity and are thus all-round Good Eggs, and not those nasty computer crooks we hear so much about in the papers.

We’re right behind them on the point about illegality, because while there are those who adopt the hacker sobriquet that wear hats of all colours including black, for us being a hacker is about having the curiosity to tinker with anything presented to us, whatever it is. It’s a word that originated among railway modelers (Internet Archived version), hardly a community that’s known for its criminal tendencies!

Popular Usage Informs Definition

It is however futile to attempt to influence a dictionary in this way. There are two types of lexicography: Prescriptive and Descriptive. With prescriptive lexicography, the dictionary instructs what something must mean or how it should be spelled, while descriptive lexicography tells you how something is used in the real world based on extensive usage research. Thus venerable lexicographers such as Samuel Johnson or Noah Webster told you a particular way to use your English, while their modern equivalents lead you towards current usage with plenty of examples.

It’s something that can cause significant discontent among some dictionary users as we can see from our consternation over the word “hacker”. The administration team at all dictionaries will be familiar with the constant stream of letters of complaint from people outraged that their pet piece of language is not reflected in the volume they regard as an authority. But while modern lexicographers admit that they sometimes walk in an uneasy balance between the two approaches, they are at heart scientists with a rigorous approach to evidence-based research, and are very proud of their efforts.

Big Data Makes for Big Dictionaries

Lexicographic research comes from huge corpora, databases of tens or hundreds of millions of words of written English, from which they can extract the subtlest of language trends to see where a word is going. These can be interesting and engrossing tools for anyone, not just linguists, so we’d urge you to have a go for yourself.

Sadly for us the corpus evidence shows the definition for “Hacker” has very firmly trended toward the tabloid newspaper meaning that associates cybercriminality. All we can do is subvert that trend by doing our best to own the word as we would prefer it to be used, re-appropriating it. At least the other weighty tome from a well-known British university has a secondary sense that we do agree with: An enthusiastic and skilful computer programmer or user“.

Disclosure: Jenny List used to work in the dictionary business.

Putting Crimpers To The Test: How Good Are Our Crimp Tools?

Almost every project of mine from the last quarter century, if it has contained any wiring, has featured somewhere at least one crimp connector. There are a multiplicity of different types of crimp, but in this case I am referring to the ubiquitous variety with a red, blue, or yellow coloured plastic sleeve denoting the wire size they are designed for. They provide a physically robust and electrically sound connection that is resistant to wire fatigue due to vibration, and that can carry hefty currents at high voltages without any problems.

You might expect this to now head off into the detail of crimp connection, but my colleague Dan has already detailed what makes a good or a bad crimp. Instead recently my constant searches for weird and wonderful things to review for your entertainment led me to a new crimp tool, and thence to a curiosity about the effectiveness of different styles of tool. So I’m going to evaluate the three different crimping methods available to me, namely my shiny new ratchet crimp pliers, my aged simple crimp pliers, and for comparison an ordinary pair of pliers. I’ll take a look at the physical strength of each crimping method followed by its electrical effectiveness, but first it’s worth looking at the tools themselves.

Continue reading “Putting Crimpers To The Test: How Good Are Our Crimp Tools?”

The Electric Vehicles Of EMF Camp

There is joy in the hearts of British and European hardware and software hackers and makers, for this is an EMF Camp year. Every couple of years, our community comes together for three summer days in a field somewhere, and thanks to a huge amount of work from its organizers and a ton of volunteers, enjoys an entertaining, stimulating, and engrossing hacker camp.

One of the features of a really good hacker camp are the electric vehicles. Not full-on electric cars, but personal camp transport. Because only the technically inept walk, right? From Hitchin’s Big Hak to TOG’s duck, with an assortment of motorized armchairs and beer crates thrown in, these allow the full creativity of the hardware community free rein through the medium of overdriven motors and cheap Chinese motor controllers.

This year at EMF Camp there will be an added dimension that should bring out a new wave of vehicles, there will be a Hacky Racers event. Novelty electric vehicles will compete for on-track glory, will parade around the camp, and will no doubt also sometimes release magic smoke. There is still plenty of time to enter, so if you’re going to EMF, get building!

We have an interest in these little electric vehicles, not least because there may well be a Hackaday-branded machine on the tarmac. We’d like to feature some of them over the weeks running up to the event, so if you are building one and have a write-up handy, please tell us about it in the comments. Charge your batteries, and we’ll see you there!

Header image: [Mark Mellors], with permission.

Is This The World’s Smallest Computer?

How small could you make a computer? In a way, that’s a question that requires that a computer be defined, because you could measure the smallest computer simply in terms of the smallest area of silicon required to create a microprocessor. So perhaps it’s better to talk about a smallest working computer. Recent entries in the race for the smallest machine have defined a computer as a complete computer system which holds onto its program and data upon power-down, but this remains one that is hotly debated. You might for instance debate as to whether that definition would exclude machines such as the crop of 1980s home computers that didn’t store their programs and data, was your Sinclair Spectrum not a computer?

At the University of Michigan they have opted for the simpler definition with their latest entry in the race to be the tiniest. Their latest machine packs an ARM Cortex M0 into a 0.3mm cube, along with photoreceptors and LEDs for programming, data throughput, and power. It is designed to be a temperature sensor and logger for medical implantation, but it stands more as a demonstration of technological prowess than as a usable product.

Pictures of a tiny computer “dwarfed by a grain of rice” make for good mass media consumption but where’s the relevance for us? The interesting part comes from the tantalizing glimpse of its construction: this is a hybrid device upon which we can see the optoelectronic components have been wire-bonded. Unfortunately the paper, catchily titled “A 0.04mm3 16nW Wireless and Batteryless Sensor System with Integrated Cortex-M0+ Processor and Optical Communication for Cellular Temperature Measurement” does not appear to be free-to-view online, so we don’t have any more information. We wish that such feats were possible within our community, but suspect those days are still pretty far away.

ROPS Will Be The Board X86 Robot Builders Are Waiting For

If your robot has outgrown a Raspberry Pi and only the raw computing power of an x86 motherboard will suffice, you are likely to encounter a problem with its interfaces. The days of ISA cards are long gone, and a modern PC is not designed to easily talk to noisy robot hardware. Accessible ports such as USB can have interfaces connected to them, but suffer from significant latency in the process.

A solution comes from ROPS, or Robot on a PCI-e Stick, a card that puts an FPGA on a blazing-fast PCI-e card that provides useful real-world interfaces such as CAN and RS485 and a pile of I/O lines as well as an IMU, barometer, and GPS. If you think you may have seen it before then you’d be right, it was one of the first-round winners of the Open Hardware Design Challenge. They’re very much still at the stage of having an FPGA dev board and working out the software so there aren’t any ROPS boards to look at yet, but this is a project that’s going somewhere, and definitely one to watch.

A MIDI Sequencer To Be Proud Of

MIDI sequencers are surprisingly expensive, making them an excellent target for [RH Electronics] who has created a sixteen-step device. It supports up to eight playable parts per step, which can be either MIDI or drum triggers.

The case and front panel are built to a very high standard, and on a piece of stripboard within lies an ATmega644 which does all the MIDI work, an ATmega328 that runs the many LEDs, and an ATtiny85 that reads the front panel buttons. The whole is kept in sync by a timer on the 644 set to produce the required MIDI clock. There is an LCD display too, which carries the status and programming interface.

You can see the result in the video below the break, in which the sequencer is put through its paces alongside a tantalising glimpse of a matching synthesiser. Is this another project, or a commercial device on which Google fails us when we try to find it? Meanwhile this is certainly not the first MIDI sequencer we’ve brought you here at Hackaday, this Arduino one is another example of several also using Atmel parts.

Continue reading “A MIDI Sequencer To Be Proud Of”

A Cleverly Concealed Magnetic Loop Antenna

We’re sure all radio amateurs must have encountered the problem faced by [Alexandre Grimberg PY1AHD] frequently enough that they nod their heads sagely. There you are, relaxing in the sun on the lounger next to the crystal-blue pool, and you fancy working a bit of DX. But the sheer horror of it all, a tower, rotator, and HF Yagi would ruin the aesthetic, so what can be done?

[Alexandre]’s solution is simple and elegant: conceal a circular magnetic loop antenna beneath the rim of a circular plastic poolside table. Construction is the usual copper pipe with a co-axial coupling loop and a large air-gapped variable capacitor, and tuning comes via a long plastic rod that emerges as a discreet knob on the opposite side of the table. It has a 10 MHz to 30 MHz bandwidth, and should provide a decent antenna for such a small space. We can’t help some concern about how easy to access that capacitor is, on these antennas there is induced a surprisingly large RF voltage across its vanes, and anyone unwary enough to sit at the table to enjoy a poolside drink might suffer a nasty RF burn to the knee. Perhaps we’d go for a remotely tuned model instead, for this reason.

[Alexandre] has many unusual loop projects under his belt, as well as producing commercial loops. Most interesting to us on his YouTube feed is this one with a capacitor formed from co-axial soft drink cans.

Thanks [Geekabit] for the tip.