[Nick Thatcher]’s Plan-B Is A Commuter Electric Unicycle

[Nick Thatcher] is a serial builder of self-balancing rides. His various Segway clones and unicycles have until now suffered from one significant problem, that of portability when not being ridden. Taking one on a train was a significant undertaking, hardly convenient in a personal transport machine.

His latest design, the Plan-B, is an electric unicycle designed to address this problem to create a truly portable piece of commuter transport. It has been designed to be as compact as possible with the ability to fold to fit in a confined space, and the weight has been reduced to a minimum.

Power comes from a 24V 350W geared motor kept on a leash through a Dimension Engineering motor controller by an Arduino with a gyro to maintain the unit’s stability The battery is an ULTRAMAX LiFePO4 , and the single wheel is an inexpensive plastic wheelbarrow part with chain drive from the motor.

The result is both rideable and portable, though with a 10mph top speed not the fastest of personal transport. He’s posted a video which you can see below the break, showing him taking it on a train journey and traversing the British urban landscape.

Continue reading “[Nick Thatcher]’s Plan-B Is A Commuter Electric Unicycle”

From Project To Kit: So You Want To Sell Electronic Kits

Many of us have enjoyed building electronic projects that come not from our own inspiration or ingenuity but from a ready-made kit. It makes sense, after all in buying a kit you should receive a tried-and-tested design that you can assemble without some of the heartache associated with getting a self-designed project right. And though in recent years the barriers to entry into the professional PCB market for small projects have lowered significantly, there is still an attraction to a kit that comes with a decent PCB and case.

The kit version of the Sinclair ZX81 microcomputer. By Smaddison (Own work) [CC BY-SA 3.0], via Wikimedia Commons.
The kit version of the Sinclair ZX81 microcomputer. By Smaddison (Own work) [CC BY-SA 3.0], via Wikimedia Commons.
If you start your electronic odyssey through kit-building, you gain more than a set of electronic projects. You learn about the circuits you build, and you gain a feel for how a well-designed project should go together. Eventually this feeds into your own projects, and in time you are producing builds that equal or surpass those you can buy as kits.

From the point of having a nicely executed project to that of wondering whether it too could be sold as a kit is not a huge step. This is the first of a series of articles that will examine the kit manufacturing process from project to customer, and will with luck deliver some insight to those of you who have always wondered whether you could make it as a kit vendor.

Continue reading “From Project To Kit: So You Want To Sell Electronic Kits”

Bending The New Amazon Dash Button To Your Will

Most Hackaday readers are familiar with the Amazon Dash button even if it has not yet made an appearance in their country or region. A WiFi enabled button emblazoned with a product logo, that triggers an Amazon order for that product when you press it. Stick it on your washing machine, press the button when you run out of laundry soap, and as if by magic some laundry soap appears. You still have to get out of your armchair to collect the soap from the delivery guy, but maybe they’re working on that problem too.

Of course the embedded computer concealed within the Dash button has been the subject of much interest within our community, and quite a few creative uses have been made of repurposed and reverse engineered examples.

Earlier this year a new Dash button model appeared. Largely similar on the outside, but sporting a comprehensive hardware update internally. Gone is the STM32 processor to be replaced by an Atmel part, and unfortunately since they also made changes to its communication protocol, gone also are most of the hacks for the device.

[Evan Allen] writes to us with his work on bending the new Dash button to his will. He goes into detail on the subject of retrieving their MAC addresses, and modifications to existing hacks to allow the buttons to be intercepted/redirected to trigger his MQTT server. It’s not by any means the end of the story and we’re sure we’ll see more accomplished uses of the new Dash button in due course, but it’s a start.

If the new button’s hardware interests you then [Matthew Petroff]’s teardown is definitely worth a look. As well as the Atmel chips — discovered to be a ATSAMG55J19A-MU with an ATWINC1500B wireless chip — the buttons now support power from a AA cell, and boast a significantly reduced power consumption. We really, really, need to pwn this tasty new hardware!

We’ve covered quite a few Dash button hacks before, from simply capturing button presses to cracking it wide open and running your own code. Let’s hope this new version will prove to be as versatile.

[Alan Wolke]’s How To Use An Oscilloscope

If you were to create a Venn diagram of Hackaday readers and oscilloscope owners the chances are the there would be a very significant intersection of the two sets. Whether the instrument in question is a decades-old CRT workhorse or a shiny modern digital ‘scope, it’s probably something you’ll use pretty often and you’ll be very familiar with its operation.

An oscilloscope is a very complex instrument containing a huge number of features. Modern ‘scopes in particular bring capabilities through software unimaginable only a few years ago. So when you look at your ‘scope, do you really know how to use its every feature? Are you getting the best from it, or are you only scratching the surface of what it can do?

[Alan Wolke, W2AEW] is an application engineer at Tektronix, so as you might expect when it comes to oscilloscopes he knows a thing or two about them. He’s spoken on the subject in the past with his “Scopes for Dopes” lecture, and his latest video is a presentation to the NJ Antique Radio Club which is a very thorough exploration of using an oscilloscope. The video is below the break and at an hour and twenty minutes it’s a long one. We make no apologies for that, for it should be fascinating in its entirety for any oscilloscope owner. Even if you find yourself nodding along to most of what he’s saying there are sure to be pearls of ‘scope wisdom in there you weren’t aware of.

Continue reading “[Alan Wolke]’s How To Use An Oscilloscope”

Drinkro The Synchro Bartender

There is a significant constituency among hackers and makers for whom it is not the surroundings in which the drink is served or the character of the person serving it that is important, but the quality of its preparation. Not for them the distilled wit and wisdom of a bartender who has seen it all, instead the computer-controlled accuracy of a precisely prepared drink. They are the creators of bartending robots, and maybe some day all dank taverns will be replaced with their creations.

Drinkro is a bartending robot built by the team at [Synchro Labs]. It uses a Raspberry Pi 3 and a custom motor controller board driving a brace of DC peristaltic liquid pumps. that lift a variety of constituent beverages into the user’s glass. There is a multi-platform app through which multiple thirsty drinkers can place their orders, and all the source code and hardware files can be found in GitHub repositories. The robot possesses a fairly meagre repertoire of vodka and only three mixers, but perhaps it will be expanded with more motor driver and pump combinations.

There is a video of the machine in action, shown below the break. We can’t help noticing it’s not the fastest of bartenders, but maybe speed isn’t everything.

Continue reading “Drinkro The Synchro Bartender”

Retrotechtacular: The Modern Telephone

We take recorded telephone messages for granted in these days of smartphones and VOIP. Our voicemail lives on an anonymous server in a data centre in the cloud somewhere, in a flash memory chip on our DECT base station, or if we’re of a retro persuasion, on a micro-cassette. Wherever we go, we now know our calls will not go unanswered.

Today’s subject takes us back to a time when automatically recording a phone call was the last word in high technology, with British Pathé newsreel piece from 1959 entitled “Modern Telephone”. Its subject is the Ansafone J10, one of the first telephone answering machines available on the British market. After featuring a fantastic home-made Meccano answering machine with turntable recording created by a doctor, it takes us to the Ansafone factory where the twin tape mechanisms of the commercial model are assembled and tested. Finally we get to see it in use on the desk of a bona fide Captain of Industry, probably about the only sort of person who could afford an Ansafone in 1959.

Part of the film’s charm comes not from the technology but from the glimpse it gives us of 1950s Britain sanitised for the newsreel. The clipped tones, leather armchairs and bookshelves, the coal fire and the engineer in a three-piece suit. The past is a foreign country; they do things differently there.

Take a look at the film below after the break, and never take your recorded calls for granted again.

Continue reading “Retrotechtacular: The Modern Telephone”

Liddiard Omnidirectional Wheels

Omnidirectional wheels are one of the hardy perennials of the world of invention. There seems to be something about the prospect of effortless parallel parking that sets the creative juices of backyard inventors flowing, and the result over the years have been a succession of impressively engineered ways to move a car sideways.

The latest one to come our way is courtesy of Canadian inventor [William Liddiard], and it is worthy of a second look because it does not come with some of the mechanical complexity associated with other omnidirectional wheel designs. [Liddiard]’s design uses a one-piece tyre in the form of a flexible torus with a set of rollers inside it which sits on a wheel fitted with a set of motorised rollers around its circumference. The entire tyre can be rotated round its toroidal axis, resulting in a tread which can move sideways with respect to the wheel.

The entire process is demonstrated in a video which is shown below the break, and the small Toyota used as a demonstration vehicle  can move sideways and spin with ease. We would be wary of using these wheels on a road car until they can be demonstrated to match a traditional tyre in terms of sideways stability when they are not in their omnidirectional mode, but we can instantly see that they would be a significant help to operators of industrial machines such as forklifts in confined spaces.

Continue reading “Liddiard Omnidirectional Wheels”