The host stands in his electronics lab with the image of four remote controls overlaid.

Introducing Infrared Remote Control Protocols

Over on his YouTube channel [Electronic Wizard] has released a video that explains how infrared (IR) remote controllers work: IR Remote Controllers protocol: 101 to advanced.

This diagram indicates how the 38 kHz carrier wave is used to encode a binary signal.This video covers the NEC family of protocols, which are widely used in typical consumer IR remote control devices, and explains how the 38 kHz carrier wave is used to encode a binary signal.  [Electronic Wizard] uses his Rigol DS1102 oscilloscope and a breadboard jig to sniff the signal from an example IR controller.

There is also an honorable mention of the HS0038 integrated-circuit which can interpret the light waves and output a digital signal. Of course if you’re a tough guy you don’t need no stinkin’ integrated-circuit IR receiver implementation because you can build your own!

Before the video concludes there is a brief discussion about how to interpret the binary signal using a combination of long and short pulses. If this looks similar to Morse Code to you that’s because it is similar to Morse Code! But not entirely the same, as you will learn if you watch the video!

A slide from a talk about Spade language with a diagram about how it fits in with Verilog, VHDL, and HLS.

The Spade Hardware Description Language

Spade is an open-source hardware description language (HDL) developed at Linköping University, Sweden.

Other HDLs you might have heard of include Verilog and VHDL. Hardware engineers use HDLs to define hardware which can be rendered in silicon. Hardware defined in HDLs might look like software, but actually it’s not software, it’s hardware description. This hardware can be realized myriad ways including in an FPGA or with an ASIC.

You have probably heard that your CPU processes instructions in a pipeline. Spade has first-class support for such pipelines. This means that design activities such as re-timing and re-pipelining are much easier than in other HDLs where the designer has to implement these by hand. (Note: backward justification is NP-hard, we’re not sure how Spade supports this, if it does at all. If you know please enlighten us in the comments!)

Spade implements a type system for strong and static typing inspired by the Rust programming language and can do type inference. It supports pattern matching such as you might see in a typical functional programming language. It boasts having user-friendly and helpful error messages and tooling.

Spade is a work in progress so please expect missing features and breaking changes. The documentation is in The Spade Book. If you’re interested you can follow development on GitLab or Discord.

So now that you know about the Spade language, are you planning to take it for a spin? You will find plenty of Verilog/VHDL designs at Hackaday which you could re-implement using Spade, such as an easy one like Breathing LED Done With Raw Logic Synthesized From A Verilog Design (see benchmarks) or a much more challenging one like Game Boy Recreated In Verilog. If you give Spade a go we’d love to see what you come up with!

Continue reading “The Spade Hardware Description Language”

A humanoid robot packs a lunch bag in the kitchen

Gemini 2.0 + Robotics = Slam Dunk?

Over on the Google blog [Joel Meares] explains how Google built the new family of Gemini Robotics models.

The bi-arm ALOHA robot equipped with Gemini 2.0 software can take general instructions and then respond dynamically to its environment as it carries out its tasks. This family of robots aims to be highly dexterous, interactive, and general-purpose by applying the sort of non-task-specific training methods that have worked so well with LLMs, and applying them to robot tasks.

There are two things we here at Hackaday are wondering. Is there anything a robot will never do? And just how cherry-picked are these examples in the slick video? Let us know what you think in the comments!

Continue reading “Gemini 2.0 + Robotics = Slam Dunk?”