Scott and his Prompt 80

Restoring A Vintage Intel Prompt 80 8080 Microcomputer Trainer

Over on his blog our hacker [Scott Baker] restores a Prompt 80, which was a development system for the 8-bit Intel 8080 CPU.

[Scott] acquired this broken trainer on eBay and then set about restoring it. The trainer provides I/O for programming, probing, and debugging an attached CPU. The first problem discovered when opening the case is that the CPU board is missing. The original board was an 80/10 but [Scott] ended up installing a newer 80/10A board he scored for fifty bucks. Later he upgraded to an 80/10B which increased the RAM and added a multimodule slot.

[Scott] has some luck fixing the failed power supply by recapping some of the smaller electrolytic capacitors which were showing high ESR. Once he had the board installed and the power supply functional he was able to input his first assembly program: a Cylon LED program! Making artistic use of the LEDs attached to the parallel port. You can see the results in the video embedded below.

Continue reading “Restoring A Vintage Intel Prompt 80 8080 Microcomputer Trainer”

A hand holding a One ROM with a Commodore 64 in the background

One ROM: The Latest Incarnation Of The Software Defined ROM

Retrocomputers need ROMs, but they’re just so read only. Enter the latest incarnation of [Piers]’s One ROM to rule them all, now built with a RP2350, because the newest version is 5V capable. This can replace the failing ROMs in your old Commodore gear with this sweet design on a two-layer PCB, using a cheap microcontroller.

[Piers] wanted to use the RP2350 from the beginning but there simply wasn’t space on the board for the 23 level shifters which would have been required. But now that the A4 stepping adds 5 V tolerance [Piers] has been able to reformulate his design.

The C64 in the demo has three different ROMs: the basic ROM, kernel ROM, and character ROM. A single One ROM can emulate all three. The firmware is performance critical, it needs to convert requests on the address pins to results on the data bus just as fast as it can and [Piers] employs a number of tricks to meet these requirements.

The PCB layout for the RP2350 required extensive changes from the larger STM32 in the previous version. Because the RP2350 uses large power and ground pads underneath the IC this area, which was originally used to drop vias to the other side of the board, was no longer available for signal routing. And of course [Piers] is constrained by the size of the board needing to fit in the original form factor used by the C64.

The One ROM code is available over on GitHub, and the accompanying video from [Piers] is an interesting look into the design process and how tradeoffs and compromises and hacks are made in order to meet functional requirements.

Continue reading “One ROM: The Latest Incarnation Of The Software Defined ROM”

A photo of the vending machine sitting on an electronics workbench

Building A Halloween Vending Computer That Talks

Our hacker from [Appalachian Forge Works] wrote in to let us know about their vending machine build: a Halloween vending computer that talks.

He starts by demonstrating the vending process: a backlit vend button is pressed, an animation plays on the screen as a synthetic voice speaks through attached speakers, the vending mechanism rotates until a successful vend is detected with a photoelectric sensor (a photoresistor and an LED) or a timeout of 10 seconds is reached (the timeout is particularly important for cases when the stock of prizes is fully depleted).

For a successful vend the prize will roll out a vending tube and through some ramps, visible via a perspex side panel, into the receptacle, as the spooky voice announces the vend. It’s the photoelectric sensor which triggers the mask to speak.

Continue reading “Building A Halloween Vending Computer That Talks”

A photo of an RPi and a note about the first lecture.

The Latest Projects From Cornell’s ECE 4760/5730

ECE 4760/5730 is the Digital Systems Design Using Microcontrollers course at Cornell University taught by [Hunter Adams]. The list of projects for spring this year includes forty write-ups — if you haven’t got time to read the whole lot you can pick a random project between 1 and 40 with: shuf -i 1-40 -n 1 and let the cards fall where they may. Or if you’re made of time you could spend a few days watching the full playlist of 119 projects, embedded below.

We won’t pick favorites from this semester’s list of projects, but having skimmed through the forty reports we can tell you that the creativity and acumen of the students really shines through. If the name [Hunter Adams] looks familiar that might be because we’ve featured his work here on Hackaday before. Earlier this year we saw his Love Letter To Embedded Systems.

While on the subject, [Hunter] also wanted us to know that he has updated his lectures, which are here: Raspberry Pi Pico Lectures 2025. Particularly these have expanded to include a bunch of Pico W content (making Bluetooth servers, connecting to WiFi, UDP communication, etc.), and some fun lower-level stuff (the RP2040 boot sequence, how to write a bootloader), and some interesting algorithms (FFT’s, physics modeling, etc.).

Continue reading “The Latest Projects From Cornell’s ECE 4760/5730”

A view of the schematics for each major component.

Simulating The Commodore PET

Over on his blog our hacker [cpt_tom] shows us how to simulate the hardware for a Commodore PET. Two of them in fact, one with static RAM and the other with dynamic RAM.

This project is serious business. The simulation environment used is Digital. Digital is a digital logic designer and circuit simulator designed for educational purposes. It’s a Java program that runs under the JVM. It deals in .dig files which are XML files that represent the details of the simulated hardware components. You don’t need to write the XML files by hand, there is a GUI for that. Continue reading “Simulating The Commodore PET”

A photo montage of scrap plastic being vacuumed up, processed in the main chamber, and bottled in gas tanks.

Solar Powered Pyrolysis Facility Converts Scrap Plastic Into Fuel

[naturejab] shows off his solar powered pyrolysis machine which can convert scrap plastic into fuel. According to the video, this is the world’s most complex hand-made pyrolysis reactor ever made. We will give him some wiggle room there around “complex” and “hand-made”, because whatever else you have to say about it this machine is incredibly cool!

As you may know pyrolysis is a process wherein heat is applied to organic material in an inert environment (such as a vacuum) which causes the separation of its covalent bonds thereby causing it to decompose. In this case we decompose scrap plastic into what it was made from: natural gas and petroleum.

His facility is one hundred percent solar powered. The battery is a 100 kWh Komodo commercial power tank. He has in the order of twenty solar power panels laying in the grass behind the facility giving him eight or nine kilowatts. The first step in using the machine, after turning it on, is to load scrap plastic into it; this is done by means of a vacuum pump attached to a large flexible tube. The plastic gets pumped through the top chamber into the bottom chamber, which contains blades that help move the plastic through it. The two chambers are isolated by a valve — operating it allows either chamber to be pumped down to vacuum independently.

Once the plastic is in the main vacuum chamber, the eight active magnetrons — the same type of device you’d find in your typical microwave oven — begin to break down the plastic. As there’s no air in the vacuum chamber, the plastic won’t catch fire when it gets hot. Instead it melts, returning to petroleum and natural gas vapor which it was made from. Eventually the resultant vapor flows through a dephlegmator cooling into crude oil and natural gas which are stored separately for later use and further processing.

If you’re interested in pyrolysis you might like to read Methane Pyrolysis: Producing Green Hydrogen Without Carbon Emissions.

Continue reading “Solar Powered Pyrolysis Facility Converts Scrap Plastic Into Fuel”

Pinout of 74HC595

Using The 74HC595 Shift Register To Drive 7-Segment Displays

In a recent video our hacker [Electronic Wizard] introduces the 74HC595 shift register and explains how to use it to drive 7-segment displays.

[Electronic Wizard] explains that understanding how to apply the 74HC595 can increase the quality of your projects and also help keep the demands on the number of pins from your microcontroller to manageable levels. If you’re interested in the gory details you can find a PDF datasheet for the 74HC595 such as this one from Texas Instruments.

[Electronic Wizard] explains further that a shift register is like a small one byte memory where its data is directly available on its eight output pins, no input address required. When you pulse the clock pin (CLK) each bit in the eight bit memory shifts right one bit, making room for a new bit on the left. The bits that fall off the right hand side can daisy chain into another 74HC595 going out on pin 9 and coming in on pin 14.

Continue reading “Using The 74HC595 Shift Register To Drive 7-Segment Displays”