Machine Pushes Cellphone Buttons From Anywhere In The World

[Mok Young Bacq] works on the weekends for mobile game monitoring service. He has three cellphones that he uses for work, and although you would think this means he could work from anywhere in the world, the roaming charges are a killer. His solution was to build an incredibly intricate machine that can use three different cellphones (PDF) on his behalf.

Above you can see it perched underneath the apex of the ladder, but you’re definitely going to want to watch the video after the break. This interface method uses a camera to look at each phone. It’s hung pointing downward and moves like a pendulum to look at one of the three screens at a time. Each phone has one servo motor for each button, which uses a flexible cable as an actuator. Now he can take trips abroad, just checking in over the Internet for his two 17-hour weekend shifts (10am to 3am the next morning) working the phones.

This reminds us of the cellphone endurance tests. What happens when a button stops working?

Continue reading “Machine Pushes Cellphone Buttons From Anywhere In The World”

Let There Be Light Inside Picture Frames

[Limpkin] picked up a beautiful painting of Budda while in Bali because he thought it would react well with different colors of lighting. His overall goal was to create a picture frame with built-in LEDs. The major design specification for the project was to provide an indirect light source that would not shine in the viewers eyes. He got down to business designing a frame using SolidWorks for his modelling. The final design has a separate track from the paining with small dividers for each diode.

After about four hours on the CNC machine it was time to get down to soldering. [Limpkin] had 576 RGB LEDs on hand. He’s not looking to drive them individually, just to have independent control of each color. This makes the soldering a bit easier as there will be just three MOSFETs to drive each color. The final product looks great and can display any mix of colored light. Not bad for 50 hours of soldering.

Heat Gun GPU Reflow Fixes Laptop

Solder connections on processors seem to be a very common failure point in modern electronics. Consider the Red Ring of Death (RRoD) on Xbox 360 or the Yellow Light of Death (YLoD) on PlayStation 3. This time around the problem is a malfunctioning Nvidia GPU on an HP Pavilion TX2000 laptop. The video is sometimes a jumbled mess and other times there’s no video at all. If the hardware is older, and the alternative to fixing it is to throw it away, you should try to reflow the solder connections on the chip.

This method uses a heat gun, which we’ve seen repair PCBs in the past. The goal here is to be much less destructive and that’s why the first step is to test out how well your heat gun will melt the solder. Place a chunk of solder on a penny, hold the heat gun one inch above it and record how long it takes the solder to flow. Once you have the timing right, mask off the motherboard (already removed from the case) so that just the chip in question is accessible. Reflow with the same spacing and timing as you did during the penny test. Hopefully once things cool down you’ll have a working laptop or gaming console again.

Repair Stuck IPod Nano Buttons

A system is only as strong as its weakest link and [Roberto Barrios] found that on the sixth generation iPod nano the buttons are the problem. It makes sense that the buttons would be exposed to wear since they’re movable parts. The issue isn’t one of contacts or springs wearing out, but how the buttons are assembled. Each consist of a couple of parts; the tactile piece that you see and press, the electrical switch which converts that force into an electrical signal, and a shim that bridges the gap between the two.

After two months of use the iPod [Roberto] was fixing had stopped responding to presses of the Power button. It turns out that the shims are attached with double-sided tape. Inspection of the internals revealed that the shim had slid to one side and no longer made contact with the electrical system. His solution was to remove the tape and clean off the goo, then reattach the shims using “two-part metal cement”.

With the shim back in place all is well but he made sure to execute this fix on all of the buttons before reassembly.

Force Feedback Rig

Strap yourself in, it’s going to be a bumpy ride. No really, if you don’t believe us, check out the video after the break of this bouncing and rolling game system. [Shawn McGrath] built it to compliment the gaming experience for Dyad, an indie game for which he is a developer. His wife was kind enough to demonstrate the machine, which utilizes one motor to rotate the display and cockpit, and another to add vibration to the experience. The parts for the system were mostly salvaged, with the addition of a projector for the display and a PlayStation SixAxis controller to sense the motion of the rig. The motors are powered by a 600W computer PSU and controlled by an Arduino. It helps that [Shawn’s] a developer because he was able to add feedback hooks to sync with the gameplay.

It’s not as intricate as the best flight simulators we’ve seen, but it will be fun for that next kegger.

Continue reading “Force Feedback Rig”

Gauss Weapons

This collection of gauss weapons use rare earth magnets to accelerate projectiles to damaging speeds. They work using the same concepts as a coil gun, but instead of just one projectile travelling along a length of guide track, there are many projectiles that work in a chain reaction. A series of magnets are placed at equal distances along the track. Each has a couple of large ball bearings on the muzzle side of the magnet. The first ball bearing is fired using mechanical force – like a spring mechanism – and accelerates as it approaches the magnet due to the attractive force of that magnetic field. When it impacts the magnet it sends one of the ball bearings on the opposite side down the track where it will accelerate when it nears the next magnet in the chain. The weapon above achieves a final projectile speed of about 68 miles per hour, breaking six fluorescent tubes in a row on at the right side of the apparatus.

Still prefer rail guns that use electromagnets? Check out this gauss pistol kit that is about as powerful as a BB gun.

Breaking The IClass Security

iClass is a popular format of RFID enabled access cards. These are issued to company employees to grant them access to parts of a building via a card reader at each security door. We’ve known for a long time that these access systems are rather weak when it comes to security. But now you can find out just how weak they are and how the security can be cracked. [Milosch Meriac] delved deep into the security protocol for HID iClass devices and has laid out the details in a white paper.

The most invasive part of the process was breaking the copy protection on PIC 18F family of chips in order to read out the firmware that controls card readers. This was done with a USB to serial cable and software that bit-bangs its own implementation of the ICSP protocol. After erasing and attacking several chips (one data block at a time) the original code was read off and patched together. Check out [Milosch’s] talk at 27C3 embedded after the break, and get the code for the ICSP bit banging attacks from the white paper (PDF).

Continue reading “Breaking The IClass Security”