Play Doom Or GTA V With Your Own Custom Controller And Xbox Emulator

[Arnov] is bringing his own custom-made controller to the party and it is sure to impress. The design appears to have been inspired by the Xbox controller layout. Two joysticks for fine control of game characters, 4 face buttons, and two shoulder buttons. He opted for all through-hole components to make the assembly easier. No messing with tiny surface mount components here. We really appreciate the detail given to the silkscreen and the homage paid to a staple of retro gaming.

We were pretty impressed with how smoothly the controller translated to the game. He mentioned that was a huge improvement over his previous design. His original design had buttons instead of joysticks, but switching to joysticks gave him much better in-game control. That could also have a lot to do with the Xbox controller emulator running the background, but still.

Given that gift-giving season is upon us, you could really impress the video game enthusiast in your life with this as a custom gift. You could even run Retro games like Doom if you hook it up to a RetroPie. That ought to get a few people’s attention.

Continue reading “Play Doom Or GTA V With Your Own Custom Controller And Xbox Emulator”

accelerometer, oled, and PocketBeagle create a gesture-controlled calculator

The Calculator Charm: Calculatorium Leviosa!

Have you ever tried waving your hand around like a magic wand and summoning a calculator? We would guess not since you’d probably look a little silly doing so. That is unless you had [Andrei’s] cool gesture-controlled calculator. [Andrei] thought it would be helpful to use a calculator in his research lab without having to take his gloves off and the results are pretty cool.

His hardware consists of a PocketBeagle, an OLED, and an MPU6050 inertial measurement unit for capturing his hand motions using an accelerometer and gyroscope. The hardware is pretty straightforward, so the beauty of this project lies in its machine learning implementation.

[Andrei] first captured a few example datasets to train his algorithm by recreating the hand gestures for each number, 0-9, and recording the resulting accelerometer and gyroscope outputs. He processed the data first with a wavelet transform. The intent of the transform was two-fold. First, the transform allowed him to reduce the number of samples in his datasets while preserving the shape of the accelerometer and gyroscope signals, the key features in the machine learning classification. Secondly, he was able to increase the number of features for the classification since the wavelet transform resulted in both approximation and detailed coefficients which can both be fed into the algorithm.

Because he had a small dataset, he used the Stratified Shuffle Split technique instead of the test train split method which is generally more suited for larger datasets. The Stratified Shuffle Split ensured approximately the same number of train and test samples for each gesture. He was also very conscious of optimizing his model for running on a portable processing unit like the PocketBeagle. He spent some time optimizing the parameters of his algorithm and ultimately converted his model to a TensorFlowLite model using the built-in “TFLiteConverter” function within TensorFlow.

Finally, in true open-source fashion, all his code is available on GitHub, so feel free to give it a go yourself. Calculatorium Leviosa!

Continue reading “The Calculator Charm: Calculatorium Leviosa!”

A face made up of 3 OLEDs

It’s Nice Having Someone To Talk To

We all get a bit lonely from time to time and talking to other humans can be a challenge. With social robots still finding their way these days, [Markus] decided to find a DIY solution he could make cheaply, resulting in the “Conversation Face.”

The build is actually pretty simple, really. You have three different OLED displays, two for the eyes and one for the mouth, that have different graphic images programmed onto them depending on the expression being displayed. There’s also a small electret microphone that senses when you are speaking to the face.  Finally, a simple face cutout covers the electronics and solidifies the aesthetic.

The eyes are programmed identically since they would move together for most expressions. [Markus] was able to get a blinking animation by quickly moving a white circle vertically through the eye screens and the results are pretty convincing. He also moves the eyes around the OLED to make the expressions seem more dynamic.

There’s not much to the mouth. [Markus] only has a mouth open and a mouth closed animation. The mouth opens when it’s the face’s turn to talk or closes when the face should be listening. This information is easily determined by measuring the output of the microphone. Interestingly enough, you can program the face to be quiet and attentive when it’s being spoken to or quite chatty to show that it’s actively engaging in the conversation.

I don’t know about you, but we can’t decide if the Conversation Face is more or less creepy than those social robots. Either way, we thought you would get a kick out of it regardless. It also looks like a funny anime character if you ask us.

Beautiful lamp made from recycled can

Another Way To Recycle Those Empty Beverage Cans

Do you ever sit around thinking of ways to repurpose things in your house? Well [BevCanTech] found a way to recycle some of his empty beverage cans by turning them into homemade wire.

Beautiful, decorative, and functional lamp made from soda can. Also showing the positive and negative voltage terminals.

The premise is simple. He cut 2 mm thick strips of wire from the beverage can along its circumference, creating a thin, long “wire” spool. He sanded the ends of each strip to crimp pieces of his homemade wire together. He found he could get about four meters from a standard-sized beverage can, probably roughly 12 oz, as he unraveled the can. He then used crimp connectors to connect his homemade wires to the battery terminals and also to the end of a flashlight. He used a red cap from another can as a pseudo light diffuser and lampshade, creating a pretty cool, almost lava lamp-like glow.

Maybe the meat of this project won’t be as filling as your Thanksgiving meal, but hopefully, it can serve as a bit of inspiration for your next freeform circuit design. Though you’ll probably want to smooth those sharp edges along your homemade wire.

Documentation Is Hard, Let The SkunkWorks Project Show You How To Do It Well

Documentation can be a bit of a nasty word, but it’s certainly one aspect of our own design process that we all wish we could improve upon. As an award-winning designer, working with some of the best toy companies around, [Jude] knows a thing or two about showing your work. In his SkunkWorks Project, he takes a maker’s approach to Bo Peep’s Skunkmobile and gives us a master class on engineering design in the process.

As with any good project brief, [Jude] first lays out his motivation for his work. He was very surprised that Pixar hadn’t commercialized Bo Peep’s Skunkmobile and hoped his DIY efforts could inspire more inclusive toy options from the Toy Story franchise. He does admit that the Skunkmobile presents a more unique design challenge than your standard, plastic, toy action figure. Combining both the textile element to create the illusion of fur and the RC components to give the toy its mobility requires careful thought. You definitely don’t want the wheels ripping into the fabric as you wheel around the backyard or for the fur to snag every object you pass by in the house.

Given the design challenges of making the Skunkmobile from scratch, [Jude] decided the best way forward was to retrofit a custom-designed skunk-shaped body onto a standard RC car chassis. The difficulty here lies in finding a chassis that can support the weight of the retrofitted body as well as one big enough to hold a 9-inch Bo Peep doll inside the driver’s compartment. Before spending endless hours 3D printing (and re-printing) his designs, [Jude] first modeled the Skunkmobile in card (using cardboard), a practice we’ve seen before, and are always in love with. He continually emphasized the form of his device was probably even more important than its function as capturing the essence as well as the “look and feel” of the Skunkmobile were critical design criteria. You can even see the skunk wagging its tail in all his demo videos. Prototyping in card gave [Jude] a good feel for his Skunkmobile and the designs translated pretty well to the 3D printed versions.

What really impressed us about [Jude’s] project is the incredible detail he provides for his entire design process from his backstory, to the initial prototypes, to the user testing, and, finally, to the realization of the final product. Remember, “We want the gory details!”

Continue reading “Documentation Is Hard, Let The SkunkWorks Project Show You How To Do It Well”

A Stress Monitor Designed Specifically To Help You Work From Home

There are quite a bit of mixed emotions regarding working from home. Some people love it and are thriving like they haven’t before, but others are having a bit of a hard time with it all. [Brandon] has been working from home for the last 12 years, but even after so many years of managing this type of work culture, he admits that it can still be a little stressful. He says he doesn’t take enough time in between tasks to simply relax and to breathe a little and the day-to-day minutia of his work can drive his stress level up if he doesn’t take some time to calm himself. He figured he could make something to monitor his stress level and remind himself to take a break and the results are pretty impressive.

He develops a system to monitor his heart rate and the ambient noise level in his room and uses these metrics as a measure of stress. If his heart rate or the ambient noise level goes above a certain threshold, then he sends himself a text message reminding himself to relax and take a break. You’ve probably seen people use heart rate as a measure of stress already, but you’re probably less familiar with using sound. [Brandon] basically thought the sound sensor would detect if he starts ranting for prolonged periods of time or if he’s in a Zoom meeting that gets too heated. We thought that was pretty neat.

[Brandon] used an off-the-shelf chest strap heart rate monitor to save himself a bit of time in trying to build his own. The device sends heart rate data to an nRF52840 over Bluetooth and then pushes the data to the cloud using a Blues Wireless Notecard. The Notecard also offers data encryption which gave [Brandon] some added peace of mind knowing his biometric data wasn’t floating around in the cloud without any sort of protection. This certainly isn’t medical-grade encryption, but it gave him a bit of comfort, nonetheless. All that data is processed in his custom-designed web app and when the appropriate thresholds are reached, he sends a text message to himself using Twilio reminding him to relax and unwind for a bit.

For his next iteration, [Brandon] might try making his own heart rate monitor. But until then, stay safe everybody, and remember to take a break whenever you need it.

Continue reading “A Stress Monitor Designed Specifically To Help You Work From Home”

Stop Touching My Face

We all have a habit or two that we’re not terribly proud of and have probably thought of any number of ways to help rid ourselves of them. Well, [Friedlc] wondered if he could create a mechanism that would get him to stop touching his face using a bit of negative conditioning. He rigged up a head brace that slaps his forehead whenever reaching for his face.

The first thing he needed to do was to detect a hand approaching his face. He decided to use a few cheap IR motion sensors he had laying around but noted they had a few limitations. He had a tough time tuning the sensitivity of the motion sensors to prevent false positives and they were completely useless in direct sunlight as the sun’s radiation saturated the photodetector. Despite these problems, [Friedlc] figured he would mostly need his device indoors so he stuck with the IR detectors.

For the “hitter” as he called it, he thought of a few different ideas. Maybe a rotating drum with a flap that would hit his hand or maybe a hitting arm on a bar linkage. He admitted that his rudimentary mechanical design knowledge made thinking of the perfect “hitter” a bit challenging, but like any good hacker, [Friedlc] just kept working at it. He decided on using a cam mechanism which allowed him to separate the motor from the hitting action. This choice actually put a lot less load on the motor which kept the motor from stalling and giving him other kinds of trouble.

[Friedlc] was pretty proud of his invention and noted that it really helped him stop touching his face as the successive strikes to the head were definitely quite a deterrent. This certainly isn’t the first time we’ve seen a Pavlovian Conditioning project on Hackaday. We could probably all use a bit of help curing a few bad habits. But maybe you prefer positive reinforcement instead.

Continue reading “Stop Touching My Face”