The modern hacker and maker has an incredible array of tools at their disposal — even a modestly appointed workbench these days would have seemed like science-fiction a couple decades ago. Desktop 3D printers, laser cutters, CNC mills, lathes, the list goes on and on. But what good is all that fancy gear if you don’t put it to work once and awhile?
If we had to guess, we’d say dust never gets a chance to accumulate on any of the tools in [Ed Nisley]’s workshop. According to his blog, the prolific hacker is either building or repairing something on a nearly daily basis. All of his posts are worth reading, but the multifaceted rebuilding of a Anker LC-40 flashlight from a couple months back recently caught our eye.
The International Space Station has been in orbit around the Earth, at least in some form, since November of 1998 — but not without help. In the vacuum of space, an object in orbit can generally be counted on to remain zipping around more or less forever, but the Station is low enough to experience a bit of atmospheric drag. It isn’t much, but it saps enough velocity from the Station that without regular “reboosts” to speed it back up , the orbiting complex would eventually come crashing down.
Naturally, the United States and Russia were aware of this when they set out to assemble the Station. That’s why early core modules such as Zarya and Zvezda came equipped with thrusters that could be used to not only rotate the complex about all axes, but accelerate it to counteract the impact of drag. Eventually the thrusters on Zarya were disabled, and its propellant tanks were plumbed into Zvezda’s fuel system to provide additional capacity.
An early image of ISS, Zarya module in center and Zvezda at far right.
But while the thrusters on Zvezda are still available for use, it turns out there’s an easier way to accelerate the Station; visiting spacecraft can literally push the orbital complex with their own maneuvering thrusters. Of course this is somewhat easier said than done, and not all vehicles have been able to accomplish the feat, but over the decades several craft have taken on the burden of lifting the ISS into a higher orbit.
Earlier this month, a specially modified SpaceX Cargo Dragon became the newest addition to the list of spacecraft that can perform a reboost. The craft will boost the Station several times over the rest of the year, which will provide valuable data for when it comes time to reverse the process and de-orbit the ISS in the future.
The Estes line of flying model rockets have inspired an untold number of children and adults alike, thanks in part to their simplicity. From the design and construction of the rockets themselves to the reliability and safety of the modular solid-propellant motors, the company managed to turn actual rocket science into a family activity. If you could glue fins onto a cardboard tube and stick a plastic nosecone on the end, you were nearly ready for launch.
But what if you’re looking for something a bit more challenging? That’s where the new Estes Scorpio 3D comes in. Unlike the classic Estes kit, which included the fins, nosecone, and other miscellaneous bits of the rocket, the Scorpio kit requires you to 3D print your own parts. Do it right, and the company says you can send your creation to heights of 1,000 feet (305 m).
A few days ago we brought you word that Google was looking to crack down on “sideloaded” Android applications. That is, software packages installed from outside of the mobile operating system’s official repository. Unsurprisingly, a number of readers were outraged at the proposed changes. Android’s open nature, at least in comparison to other mobile operating systems, is what attracted many users to it in the first place. Seeing the platform slowly move towards its own walled garden approach is concerning, especially as it leaves the fate of popular services such as the F-Droid free and open source software (FOSS) repository in question.
But for those who’ve been keeping and eye out for such things, this latest move by Google to throw their weight around isn’t exactly unexpected. They had the goodwill of the community when they decided to develop an open source browser engine to keep the likes of Microsoft from taking over the Internet and dictating the rules, but now Google has arguably become exactly what they once set out to destroy.
Today they essentially control the Internet, at least as the average person sees it, they control 72% of the mobile phone OS market, and now they want to firm up their already outsized control which apps get installed on your phone. The only question is whether or not we let them get away with it.
In this episode of the Hackaday Podcast, editors Elliot Williams and Tom Nardi start out with a warning about potentially radioactive shrimp entering the American food supply via Walmart, and things only get weirder from there. The extra spicy shrimp discussion makes a perfect segue into an overview of a pair of atomic One Hertz Challenge entries, after which they’ll go over the latest generation of 3D printer filament, using an old Android smartphone as a low-power Linux server, some tips for creating better schematics, and Lorde’s specification-bending transparent CD. Finally, you’ll hear about how the nature of digital ownership influences the hardware we use, and on the other side of the coin, how open source firmware like QMK lets you build input devices on your terms.
Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!
Given all the incredible technology developed or improved during the Apollo program, it’s impossible to pick out just one piece of hardware that made humanity’s first crewed landing on another celestial body possible. But if you had to make a list of the top ten most important pieces of gear stacked on top of the Saturn V back in 1969, the fuel cell would have to place pretty high up there.
Apollo fuel cell. Credit: James Humphreys
Smaller and lighter than batteries of the era, each of the three alkaline fuel cells (AFCs) used in the Apollo Service Module could produce up to 2,300 watts of power when fed liquid hydrogen and liquid oxygen, the latter of which the spacecraft needed to bring along anyway for its life support system. The best part was, as a byproduct of the reaction, the fuel cells produced drinkable water.
The AFC was about as perfectly suited to human spaceflight as you could get, so when NASA was designing the Space Shuttle a few years later, it’s no surprise that they decided to make them the vehicle’s primary electrical power source. While each Orbiter did have backup batteries for emergency purposes, the fuel cells were responsible for powering the vehicle from a few minutes before launch all the way to landing. There was no Plan B. If an issue came up with the fuel cells, the mission would be cut short and the crew would head back home — an event that actually did happen a few times during the Shuttle’s 30 year career.
This might seem like an incredible amount of faith for NASA to put into such a new technology, but in reality, fuel cells weren’t really all that new even then. The space agency first tested their suitability for crewed spacecraft during the later Gemini missions in 1965, and Francis Thomas Bacon developed the core technology all the way back in 1932.
So one has to ask…if fuel cell technology is nearly 100 years old, and was reliable and capable enough to send astronauts to the Moon back in 1960s, why don’t we see them used more today?
When we last brought you word of the SS United States, the future of the storied vessel was unclear. Since 1996, the 990 foot (302 meter) ship — the largest ocean liner ever to be constructed in the United States — had been wasting away at Pier 82 in Philadelphia. While the SS United States Conservancy was formed in 2009 to support the ship financially and attempt to redevelop it into a tourist attraction, their limited funding meant little could be done to restore or even maintain it. In January of 2024, frustrated by the lack of progress, the owners of the pier took the Conservancy to court and began the process of evicting the once-great liner.
SS United States docked at Pier 82 in Philadelphia
It was hoped that a last-minute investor might appear, allowing the Conservancy to move the ship to a new home. But unfortunately, the only offer that came in wasn’t quite what fans of the vessel had in mind: Florida’s Okaloosa County offered $1 million to purchase the ship so they could sink it and turn it into the world’s largest artificial reef.
The Conservancy originally considered it a contingency offer, stating that they would only accept it if no other options to save the ship presented themselves. But by October of 2024, with time running out, they accepted Okaloosa’s offer as a more preferable fate for the United States than being scrapped.
It at least means the ship will remain intact — acting not only as an important refuge for aquatic life, but as a destination for recreational divers for decades to come. The Conservancy has also announced plans to open a museum in Okaloosa, where artifacts from the ship will be on display.