Could Space Radiation Mutate Seeds For The Benefit Of Humanity?

Humans have forever been using all manner of techniques to better secure the food we need to sustain our lives. The practice of agriculture is intimately tied to the development of society, while techniques like selective breeding and animal husbandry have seen our plants and livestock deliver greater and more nourishing bounty as the millennia have gone by. More recently, more direct tools of genetic engineering have risen to prominence, further allowing us to tinker with our crops to make them do more of what we want.

Recently, however, scientists have been pursuing a bold new technique. Researchers have explored using radiation from space to potentially create greater crops to feed more of us than ever.

Continue reading “Could Space Radiation Mutate Seeds For The Benefit Of Humanity?”

Survival mechanisms in Deinococcus radiodurans bacterium. (Credit: Feng Liu et al., 2023)

Bacterium Demonstrates Extreme Radiation Resistance Courtesy Of An Antioxidant

Extremophile lifeforms on Earth are capable of rather astounding feats, with the secret behind the extreme radiation resistance of one of them now finally teased out by researchers. As one of the most impressive extremophiles, Deinococcus radiodurans is able to endure ionizing radiation levels thousands of times higher than what would decisively kill a multicellular organism like us humans. The trick is the antioxidant which this bacterium synthesizes from multiple metabolites that combine with manganese. An artificial version of this antioxidant has now been created that replicates the protective effect.

The ternary complex dubbed MDP consists of manganese ions, phosphate and a small peptide, which so far has seen application in creating vaccines for chlamydia. As noted in a 2023 study in Radiation Medicine and Protection by [Feng Liu] et al. however, the D. radiodurans bacterium has more survival mechanisms than just this antioxidant. Although much of the ionizing radiation is neutralized this way, it can not be fully prevented. This is where the highly effective DNA repair mechanism comes into play, along with a range of other adaptations.

The upshot of this is the synthesis of a very effective and useful antioxidant, but as alluded to in the press releases, just injecting humans with MDP will not instantly give them the same super powers as our D. radiodurans buddy.

Featured image: Survival mechanisms in Deinococcus radiodurans bacterium. (Credit: Feng Liu et al., 2023)

Creating A Radiation King Radio In The Real World

If you’re a fan of the Fallout series of games, you’ve probably come across a Radiation King radio before. In the game, that is, they don’t exist in real life. Which is precisely why [zapwizard] built one!

Externally, the design faithfully recreates the mid-century design of the Radiation King. It’s got the louvered venting on the front panel, the chunky knobs, and a lovely analog needle dial, too. Inside, it’s got a Raspberry Pi Zero which is charged with running the show and dealing with audio playback. It’s paired with a Pi Pico, which handles other interface tasks.

It might seem simple, but the details are what really make this thing shine. It doesn’t just play music, it runs a series of simulated radio stations which you can “tune into” using the radio dial. [zapwizard dives into how it all works—from the air core motor behind the simulated tuning dial, to the mixing of music and simulated static. It’s really worth digging into if you like building retro-styled equipment that feels more like the real thing.

It’s not just a prop—it’s a fully-functional item from the Fallout universe, made manifest. You know how much we love those. If you’re cooking up your own post-apocalyptic hacks, fictional or non-fictional, don’t hesitate to let us know.

Memristors Are Cool, Radiation-resistant Memristors Even Moreso

Space is a challenging environment for semiconductors, but researchers have shown that a specific type of memristor (the hafnium oxide memristor, to be exact) actually reacts quite usefully when exposed to gamma radiation. In fact, it’s even able to leverage this behavior as a way to measure radiation exposure. In essence, it’s able to act as both memory and a sensor.

Being able to resist radiation exposure is highly desirable for space applications. Efficient ways to measure radiation exposure are just as valuable. The hafnium oxide memristor looks like it might be able to do both, but before going into how that works, let’s take a moment for a memristor refresher.

A memristor is essentially two conductive plates between which bridges can be made by applying a voltage to “write” to the device, by which one sets it to a particular resistance. A positive voltage causes bridging to occur between the two ends, lowering the device’s resistance, and a negative voltage reverses the process, increasing the resistance. The exact formulation of a memristor can vary. The memristor was conceived in the 1970s by Leon Chua, and HP Labs created a working one in 2008. An (expensive) 16-pin DIP was first made available in 2015.

A hafnium oxide memristor is a bit different. Normally it would be write-once, meaning a negative voltage does not reset the device, but researchers discovered that exposing it to gamma radiation appears to weaken the bridging, allowing a negative voltage to reset the device as expected. Exposure to radiation also caused a higher voltage to be required to set the memristor; a behavior researchers were able to leverage into using the memristor to measure radiation exposure. Given time, a hafnium oxide memristor exposed to radiation, causing it to require higher-than-normal voltages to be “set”, eventually lost this attribute. After 30 days, the exposed memristors appeared to recover completely from the effects of radiation exposure and no longer required an elevated voltage for writing. This is the behavior the article refers to as “self-healing”.

The research paper has all the details, and it’s interesting to see new things relating to memristors. After all, when it comes to electronic components it’s been quite a long time since we’ve seen something genuinely new.

Broken Genes And Scrambled Proteins: How Radiation Causes Biological Damage

If decades of cheesy sci-fi and pop culture have taught us anything, it’s that radiation is a universally bad thing that invariably causes the genetic mutations that gifted us with everything from Godzilla to Blinky the Three-Eyed Fish. There’s a kernel of truth there, of course. One only needs to look at pictures of what happened to Hiroshima survivors or the first responders at Chernobyl to see extreme examples of what radiation can do to living tissues.

But as is usually the case, a closer look at examples a little further away from the extremes can be instructive, and tell us a little more about how radiation, both ionizing and non-ionizing, can cause damage to biochemical structures and processes. Doing so reveals that, while DNA is certainly in the crosshairs for damage by radiation, it’s not the only target — proteins, carbohydrates, and even the lipids that form the membranes within cells are subject to radiation damage, both directly and indirectly. And the mechanisms underlying all of this end up revealing a lot about how life evolved, as well as being interesting in their own right.

Continue reading “Broken Genes And Scrambled Proteins: How Radiation Causes Biological Damage”

Detecting Radiation For Fun And Profit

It used to be that every well-stocked doomsday bunker had a Geiger counter. These days, you don’t have to have a big tube-based meter. You can inexpensively get a compact digital instrument to handle your radiation detection needs. [DiodeGoneWild] reviews and tears down such a unit from FNIRSI. The case looks like several other similar instruments we’ve seen lately, so presumably, someone is mass-producing these handheld meter cases. You can see the video, below. The meter reads the absolute radioactivity and can also measure cumulative exposure.

After measuring a few common radioactive items, we get to the teardown. Inside, of course, is an ordinary tube. A few screws reveal a typical rechargeable battery, a fairly simple PCB with a microcontroller and battery backup for the real-time clock. A lot of the board is involved in multiplying voltage up to the several hundred volts required for the Geiger tube.

The other side of the PCB has only buttons, a vibration motor, and, of course, the LCD. We don’t know how you might test the relative accuracy other than comparing it to a known-good meter. The bare tube was, of course, more sensitive without the plastic cover, but that could be calibrated out, too.

A Geiger counter doesn’t have to have a lot of parts. Either way, a surprising number of things will set them off.

Continue reading “Detecting Radiation For Fun And Profit”

Dosimetry: Measuring Radiation

Thanks to stints as an X-ray technician in my early 20s followed by work in various biology labs into my early 40s, I’ve been classified as an “occupationally exposed worker” with regard to ionizing radiation for a lot of my life. And while the jobs I’ve done under that umbrella have been vastly different, they’ve all had some common ground. One is the required annual radiation safety training classes. Since the physics never changed and the regulations rarely did, these sessions would inevitably bore everyone to tears, which was a pity because it always felt like something I should be paying very close attention to, like the safety briefings flight attendants give but everyone ignores.

The other thing in common was the need to keep track of how much radiation my colleagues and I were exposed to. Aside from the obvious health and safety implications for us personally, there were legal and regulatory considerations for the various institutions involved, which explained the ritual of finding your name on a printout and signing off on the dose measured by your dosimeter for the month.

Dosimetry has come a long way since I was actively considered occupationally exposed, and even further from the times when very little was known about the effects of radiation on living tissue. What the early pioneers of radiochemistry learned about the dangers of exposure was hard-won indeed, but gave us the insights needed to develop dosimetric methods and tools that make working with radiation far safer than it ever was.

Continue reading “Dosimetry: Measuring Radiation”