The Radioactive Source Missing In Australian Desert Has Been Found

Nuclear material is relatively safe when used, stored, and managed properly. This generally applies to a broad range of situations, from nuclear medicine to nuclear power generation. Some may argue it’s impossible to use nuclear weapons safely. In any case, stringent rules exist to manage nuclear material for good reason.

Sometimes, though, things go wrong, mistakes are made, and that nuclear material ends up going AWOL. That’s the situation that faced authorities in Australia, as they scoured over a thousand kilometers of desert highway for a tiny missing radioactive source with the potential to cause serious harm. Thankfully, authorities were able to track it down.

Continue reading “The Radioactive Source Missing In Australian Desert Has Been Found”

Inside A 1940’s Spy Radio

The RCA CR-88 was a radio receiver made to work in top-secret government eavesdropping stations. As you might expect, these radios are top-of-the-line, performance-wise, at least when they are working correctly. [Mr. Carlson] has one on his bench, and we get to watch the show on his recent video that you can see below.

Interestingly, [Mr. Carlson] uses some Sherlock Holmes-like deductive reasoning to guess some things about the radio’s secret history. The radio’s design is decidedly heavy-duty, with a giant power transformer and many tubes, IF transformers, and large filter capacitors.

Continue reading “Inside A 1940’s Spy Radio”

A Single-Resistor Radio Transmitter, Thanks To The Power Of Noise

One of the great things about the Hackaday community is how quickly you find out what you don’t know. That’s not a bad thing, of course; after all, everyone is here to get smarter, right? So let’s work together to get our heads around this paper (PDF) by [Zerina Kapetanovic], [Miguel Morales], and [Joshua R. Smith] from the University of Washington, which purports to construct a low-throughput RF transmitter from little more than a resistor.

This witchcraft is made possible thanks to Johnson noise, also known as Johnson-Nyquist noise, which is the white noise generated by charge carriers in a conductor. In effect, the movement of electrons in a material thanks to thermal energy produces noise across the spectrum. Reducing interference from Johnson noise is why telescopes often have their sensors cooled to cryogenic temperatures. Rather than trying to eliminate Johnson noise, these experiments use it to build an RF transmitter, and with easily available and relatively cheap equipment. Continue reading “A Single-Resistor Radio Transmitter, Thanks To The Power Of Noise”

AIOC: The Ham Radio All-In-One Cable For Audio And APRS

The Ham Radio All-in-one cable (AIOC) is a small PCB attachment for a popular series of radio transceivers which adds a USB-attached audio interface and virtual TTY port for programming and the push-to-talk function. The STM32F373 microcontroller (which, sadly is still hard to find in the usual channels) is a perfect fit for this application, with all the needed hardware resources.

With USB-C connectivity, the AIOC enumerates as a sound card as well as a virtual serial device, so interfacing to practically any host computer should be plug-and-play. Connection to the radio uses 12mm separation 3.5mm and 2.5mm TRS connectors, so is compatible with at least the Baofeng UV-5R but likely many other cheap transceivers that have the same physical setup.

Instructions are provided to use the AIOC with Dire Wolf for easy access to APRS applications, which makes a nice out-of-the-box demo to get you going. APRS is not all about tracking things though since other applications can sit atop the APRS/AX.25 network, for example, HROT: the ham radio of things.

We’ve seen quite a few Baofeng (and related products) hacks, like this sketchy pile of wires allowing one to experiment with the guts of the radio for APRS. Of course, such cheap radio transceivers cut so many engineering corners that there are movements to ban their sale, so maybe a new batch of better radios from our friends in the East is on the horizon?

Thanks to [Hspil] for the tip!

Two hands holding a 3d printed alarm clock with an LCD display, snooze button and knob on top

IO Connected Radio Alarm Clock

[CoreWeaver] creates an alarm clock that includes features one might expect in such a project, including an FM radio, snooze button inputs and a display, but goes beyond the basic functionality to include temperature sensing and a PC connection, opening the way for customizable functionality.

Block diagram for the IO connected Alarm Clock

An Atmega328 is used for the main microcontroller which communicates via I2C both to a DS1307 real time clock (RTC) and a TEA5767 FM module. The main power comes from a 9V power source with an LM317 and LM7805 linear regulators providing a 3.3V and 5V power rail, respectively. Most of the electronics are powered using 5V except for the TEA5767, which is powered from the 3.3V rail and has its I2C communication levels shifted from 5V to 3.3V. The audio output of the TEA5767 feeds directly into the TDA7052 audio amplifier to drive the speakers. Since the RTC has an auxiliary coin cell battery for power, the alarm clock can keep accurate time even when not plugged in. Continue reading “IO Connected Radio Alarm Clock”

Citizen-Driven Network Monitors Public Service Radio For Natural Disaster Alerts

Time is of the essence in almost every emergency situation, especially when it comes to wildfires. A wind-driven fire can roar across a fuel-rich landscape like a freight train, except one that can turn on a dime or jump a mile-wide gap in a matter of seconds. Usually, the only realistic defense against fires like these is to get the hell out of their way as soon as possible and make room for the professionals to do what they can to stop the flames.

Unfortunately, most people living in areas under threat of wildfires and other natural disasters are often operating in an information vacuum. Official channels take time to distribute evacuation orders, and when seconds count, such delays can cost lives. That’s the hole that Watch Duty seeks to fill.

Watch Duty is a non-profit wildfire alerting, mapping, and tracking service that provides near-real-time information to those living in wildfire country. Their intelligence is generated by a network of experienced fire reporters, who live in wildfire-prone areas and monitor public service radio transmissions and other sources to get a picture of what’s going on in their specific area. When the data indicate an incident is occurring, maps are updated and alerts go out via a smartphone app. Reporters have to abide by a strict code of conduct designed to ensure the privacy of citizens and the safety of first responders.

While Watch Duty’s network covers a substantial area of California — the only state covered so far — there were still a significant number of dead zones, mostly in the more remote areas of the Sierra Nevada Mountains and in the northern coastal regions. To fill these gaps, Watch Duty recently launched Watch Duty Echo, which consists of a network of remote listening posts.

Each station is packed with RTL-SDR receivers that cover a huge swath of spectrum used by the local fire, law enforcement, EMS agencies — any organization likely to be called to respond to an incident. In addition, each station has an SDR dedicated to monitoring ADS-B transponders and air band frequencies, to get a heads-up on incidents requiring aerial support. The listening posts have wideband discone antennas and a dedicated 1090-MHz ADS-B antenna, with either a cellular modem or a Starlink terminal to tie into the Watch Duty network.

Hats off to the folks at Watch Duty for putting considerable effort into a system like this and operating it for the public benefit. Those who choose to live close to nature do so at their own risk, of course, but a citizen-driven network that leverages technology can make that risk just a little more manageable.

Supercon 2022: Sam Mulvey Shows You How To FM Radio

Sam Mulvey built his own radio station in Tacoma, WA. Is there a better way to meld ham radio practice with a colossal number of DIY electrical and computer projects? Sam would say there isn’t one! This 45-minute talk is basically the lessons-learned review of setting up KTQA 95.3 – the radio station on the hill.

Sam starts out the talk by introducing you to LPFM. And maybe you didn’t know that there’s a special type of license issued by the US FCC allowing non-profit community radio stations up to 100 W, covering an radius of around 5 km. It’s like running a pirate radio station, but by jumping through a few legal hoops, made legal.

Trash on the Radio

Putting a radio station together on a budget requires a ton of clever choices, flexibility, and above all, luck. But if you’re willing to repair a busted CD player or turntable, scrounge up some used computers, and work on your own amplifiers, the budget doesn’t have to be the limiting factor.

Being cheap means a lot of DIY. For instance, Sam and friends made a custom console to support all the gear and hide all the wiring. Some hot tips from the physical build-out: painted cinderblocks make great studio monitor stands, and Cat-5 can carry two channels of balanced audio along with power, with sufficient isolation that it all sounds clean. Continue reading “Supercon 2022: Sam Mulvey Shows You How To FM Radio”