Reviving A Maplin 4600 DIY Synthesizer From The 1970s

A piece of musical history is the Maplin 4600, a DIY electronic music synthesizer from the 1970s. The design was published in an Australian electronics magazine and sold as a DIY kit, and [LOOK MUM NO COMPUTER] got his hands on an original Maplin 4600 that he refurbishes and puts through its paces.

Inserting conductive pegs is how the operator connects different inputs and outputs.

The Maplin 4600 is a (mostly) analog device with a slightly intimidating-looking layout. It features multiple oscillators, mixers, envelope generators, filters, and a complex-looking patch bay on the right hand side that is reminiscent of a breadboard. By inserting conductive pins, one can make connections between various inputs and outputs.

Internally the different features and circuits are mostly unconnected from one another by default, so the patch board is how the instrument is “programmed” and the connections made can be quite complex. The 4600 is one of a few synthesizer designs by [Trevor Marshall], who has some additional details about on his website.

The video (embedded below) is a complete walk-through of the unit, including its history, quirks, and design features. If you’d like to skip directly to a hands-on demonstrating how it works, that begins around the 10:15 mark.

Synthesizers have a rich DIY history and it’s fascinating to see an in-depth look at this one. And hey, if you like your synths complex and intimidating, do yourself a favor and check out the Starship One.

Continue reading “Reviving A Maplin 4600 DIY Synthesizer From The 1970s”

Repairing A Legendary Elka Synthex Analog Synthesizer

Handy diagnostic LEDs on the side of the tone generator boards. (Credit: Mend it Mark, YouTube)

Somehow, an Elka Synthex analog synthesizer made it onto [Mend it Mark]’s repair bench recently. It had a couple of dud buttons, and some keys produced the wrong tone. Remember, this is an analog synthesizer from the 1980s, so we’re talking basic 74LS chips and kin. Fortunately, Elka helped him with the complete repair manual, including schematics.

As usual, [Mark] starts by diagnosing the faults, using the schematics to mark the parts of the circuitry to focus on. Then, the synth’s bonnet is popped open to reveal its absolutely gobsmackingly delightful inner workings, with neatly modular PCBs attached to a central backplane. The entire unit is controlled by a 6502 MPU, with basic counter ICs handling tone generation, controlled by top panel settings.

The Elka Synthex is a polyphonic analog synthesizer produced from 1981 to 1985 and used by famous artists, including Jean-Michel Jarre. Due to its modular nature, [Mark] was quickly able to hunt down the few defective 74LS chips and replace them before testing the instrument by playing some synth tunes from Jean-Michel Jarre’s Oxygène album, as is proper with a 1980s synthesizer.

Looking for something simpler? Or, perhaps, you want something not quite that simple.

Continue reading “Repairing A Legendary Elka Synthex Analog Synthesizer”

You Can Use A Crappy Mixer As A Neat Synthesizer

[Simon the Magpie] found himself in possession of a Behringer mixer that turned up in someone’s garbage. They’re not always the most well-regarded mixers, but [Simon] saw an opportunity to do something a bit different with it. He decided to show us all how you can use a mixer as a synthesizer.

[Simon] actually picked up the “no-input” technique from [Andreij Rublev] and decided to try it out on his own equipment. The basic idea is to use feedback through the mixer to generate tones. To create a feedback loop, connect an auxiliary output on the mixer to one of the mixer’s input channels. The gain on the channel is then increased on the channel to create a great deal of feedback. The mixer’s output is then gently turned up, along with the volume on the channel that has formed the feedback loop. If you’ve hooked things up correctly, you should have some kind of tone feedbacking through the mixer. Want to change the pitch? Easy – just use the mixer’s EQ pots!

It’s pretty easy to get some wild spacey sounds going. Get creative and you can make some crunchy sounds or weird repeating tones if you play with the mixer’s built in effects. Plus, the benefit of a mixer is that it has multiple channels. You can create more feedback loops using the additional channels if you have enough auxiliary sends for the job. Stack them up or weave them together and you can get some wild modulation going.

Who needs a modular synth when you can do all this with a four channel mixer and some cables? Video after the break.

Continue reading “You Can Use A Crappy Mixer As A Neat Synthesizer”

Audio Synthesizer Hooked Up With ChatGPT Interface

ChatGPT is being asked to handle all kinds of weird tasks, from determining whether written text was created by an AI, to answering homework questions, and much more. It’s good at some of these tasks, and absolutely incapable of others. [Filipe dos Santos Branco] and [Edward Gu] had an out of the box idea, though. What if ChatGPT could do something musical?

They built a system that, at the press of a button, would query ChatGPT for a 10-note melody in a given musical key. Once the note sequence is generated by the large language model, it’s played out by a PWM-based synthesizer running on a Raspberry Pi Pico.

Ultimately, ChatGPT is no musical genius. It’s simply picking a bunch of notes from a list that are known to work together melodically; that’s the whole point of musical keys. It would have been wild if it generated some riffs on the level of Stairway to Heaven or Spontaneous Devotion, but that might be asking for too much.

Here’s the question, though. If you trained a large language model, but got it to digest sheet music instead of written texts… could it learn to write music in various genres and styles? If someone isn’t working on that already, there’s surely an entire PhD you could get out of that idea alone. We should talk!

In any case, it’s one of the more creative projects from the ever-popular ECE 4760 class at Cornell. We’ve featured a bunch of projects from the class over the years, and noted how the course now runs on the RP2040. Continue reading “Audio Synthesizer Hooked Up With ChatGPT Interface”

Cyanodore 6 Is A Rad Commodore 64 Synthesizer

The Commodore 64 is celebrated to this day for its capable SID sound chip, which provided the soundtrack for some of the best video games of its era. Even today, it’s still in demand as a chiptune synth. [gavinlyons] decided to take a breadbox-style C64 and mod it to be a more dedicated synth platform, creating what he calls the Cyanodore 6.

The build starts by equipping the C64 with MIDI via a C-LAB interface cartridge. Software is loaded on to the C64 via a readily-available SD2ISEC converter, which lets the retro computer run off SD cards. The original SID was removed and replaced with an ARMSID emulator instead, giving the rig stereo output with some custom wiring. Four potentiometers were also added to control various synth parameters by wiring them into the C64’s two joystick ports. There are a variety of synth programs that can run on the C64, with [gavinlyons] noting CynthCart, STATION64, and MicroRhythm as popular choices. Other nifty mods include the keyboard illumination, tube preamp, and integrated 7″ LCD screen.

If you’re looking to start using your C64 as a performance instrument, this build is an excellent starting point. We’ve seen other neat builds in this area before, too. It’s got just about everything you’ll need on stage. Video after the break.

Continue reading “Cyanodore 6 Is A Rad Commodore 64 Synthesizer”

Arduino Synthesizer Uses Modified Slide Pots

There comes a point in every Arduino’s life where, if it’s lucky, it becomes a permanent fixture in a project. We can’t think of too many better forever homes for an Arduino than inside of a 3D-printed synthesizer such as this 17-key number by [ignargomez] et al.

While there are myriad ways to synthesizer, this one uses the tried-and-true method of FM synthesis courtesy of an Arduino Nano R3. In addition to the 17 keys, there are eight potentiometers here — four are used for FM synthesis control, and the other four are dedicated to attack/delay/sustain/release (ADSR) control of the sound envelope.

One of the interesting things here is that [ignargomez] and their team were short a few regular pots and modified a couple of slide pots for circular use — we wish there was more information on that. As a result, the 3D printed enclosure underwent several iterations. Be sure to check out the brief demo after the break.

Don’t have any spare Arduinos? The BBC Micro:bit likes to make noise, too.

Continue reading “Arduino Synthesizer Uses Modified Slide Pots”

BBC Micro:Bit As Handheld Synthesizer

The BBC Micro:bit, while not quite as popular in our community as other microcontroller development boards, has a few quirks that can make it a much more interesting piece of hardware to build a project around than an Arduino. [Turi] took note of these unique features and decided that it was the perfect platform to build a synthesizer on.

The Micro:bit includes two important elements that make this project work: the LED matrix and a gyro sensor. [Turi] built a 5×5 button matrix for inputs and paired each to one of the diodes, which eliminates the problem of false inputs. The gyro sensor is used for detuning, which varies the pitch of any generated sound by a set amount according to the orientation of the device. It also includes a passive low-pass filter to make the sound more pleasant to the ear, especially for younger players of the machine. He’s released the source code on his GitHub page for anyone interested in recreating it.

While this was a one-off project for [Turi], he notes that using MicroPython to program it instead of C led to a lot of unnecessary complications, and the greater control allowed by C would enable some extra features with less hassle. Still, it’s a fun project that really showcases the unique features of this board, much like this tiny Sumo robot we covered over the summer.

Continue reading “BBC Micro:Bit As Handheld Synthesizer”