A man is shown on the left of the screen, speaking to the camera. On the right of the screen, a Smith chart is displayed. At the top of the screen, the words "TWO METHODS" are displayed.

A Gentle Introduction To Impedance Matching

Impedance matching is one of the perpetual confusions for new electronics students, and for good reason: the idea that increasing the impedance of a circuit can lead to more power transmission is frighteningly unintuitive at first glance. Even once you understand this, designing a circuit with impedance matching is a tricky task, and it’s here that [Ralph Gable]’s introduction to impedance matching is helpful.

The goal of impedance matching is to maximize the amount of power transmitted from a source to a load. In some simple situations, resistance is the only significant component in impedance, and it’s possible to match impedance just by matching resistance. In most situations, though, capacitance and inductance will add a reactive component to the impedance, in which case it becomes necessary to use the complex conjugate for impedance matching.

The video goes over this theory briefly, but it’s real focus is on explaining how to read a Smith chart, an intimidating-looking tool which can be used to calculate impedances. The video covers the basic impedance-only Smith chart, as well as a full-color Smith chart which indicates both impedance and admittance.

This video is the introduction to a planned series on impedance matching, and beyond reading Smith charts, it doesn’t really get into many specifics. However, based on the clear explanations so far, it could be worth waiting for the rest of the series.

If you’re interested in more practical details, we’ve also covered another example before. Continue reading “A Gentle Introduction To Impedance Matching”

Prusa Mini with endoscope nozzle cam and pip preview

Prusa Mini Nozzle Cam On The Cheap

Let me throw in a curveball—watching your 3D print fail in real-time is so much more satisfying when you have a crisp, up-close view of the nozzle drama. That’s exactly what [Mellow Labs] delivers in his latest DIY video: transforming a generic HD endoscope camera into a purpose-built nozzle cam for the Prusa Mini. The hack blends absurd simplicity with delightful nerdy precision, and comes with a full walkthrough, a printable mount, and just enough bad advice to make it interesting. It’s a must-see for any maker who enjoys solder fumes with their spaghetti monsters.

What makes this build uniquely brilliant is the repurposing of a common USB endoscope camera—a tool normally reserved for inspecting pipes or internal combustion engines. Instead, it’s now spying on molten plastic. The camera gets ripped from its aluminium tomb, upgraded with custom-salvaged LEDs (harvested straight from a dismembered bulb), then wrapped in makeshift heat-shrink and mounted on a custom PETG bracket. [Mellow Labs] even micro-solders in a custom connector just so the camera can be detached post-print. The mount is parametric, thanks to a community contribution.

This is exactly the sort of hacking to love—clever, scrappy, informative, and full of personality. For the tinkerers among us who like their camera mounts hot and their resistor math hotter, this build is a weekend well spent.

Continue reading “Prusa Mini Nozzle Cam On The Cheap”

3D Printed Spirograph Makes Art Out Of Walnut

Who else remembers Spirograph? When making elaborate spiral doodles, did you ever wish for a much, much bigger version? [Fortress Fine Woodworks] had that thought, and “slapped a router onto it” to create a gorgeous walnut table.

Hands holding a 3d printed sanding block, shaped to fit the grooves routed in the table which is visible in the background.
This printed sanding block was a nice touch.

The video covers not only 3D printing the giant Spirograph, which is the part most of us can easily relate to, but all the woodworking magic that goes into creating a large hardwood table. Assembling the table out of choice lumber from the “rustic” pile is an obvious money-saving move, but there were a lot of other trips and tricks in this video that we were happy to learn from a pro. The 3D printed sanding block he designed was a particularly nice detail; it’s hard to imagine getting all those grooves smoothed out without it.

Certainly this pattern could have been carved with a CNC machine, but there is a certain old school charm in seeing it done (more or less) by hand with the Spirograph jig. [Fortress Fine Woodworks] would have missed out on quite the workout if he’d been using a CNC machine, too, which may or may not be a plus to this method depending on your perspective. Regardless, the finished product is a work of art and worth checking out in the video below.

Oddly enough, this isn’t the first time we’ve seen someone use a Spirograph to mill things. It’s not the first giant-scale Spirograph we’ve highlighted, either. To our knowledge, it’s the first time someone has combined them with an artful walnut table.

Continue reading “3D Printed Spirograph Makes Art Out Of Walnut”

Supercon 2024: Turning Talk Into Action

Most of us have some dream project or three that we’d love to make a reality. We bring it up all the time with friends, muse on it at work, and research it during our downtime. But that’s just talk—and it doesn’t actually get the project done!

At the 2024 Hackaday Supercon, Sarah Vollmer made it clear—her presentation is about turning talk into action. It’s about how to overcome all the hurdles that get in the way of achieving your grand project, so you can actually make it a reality. It might sound like a self-help book—and it kind of is—but it’s rooted in the experience of a bonafide maker who’s been there and done that a few times over.

Continue reading “Supercon 2024: Turning Talk Into Action”

A human hand in a latex glove holds a test tube filled with red liquid labeled H5N1. In the background is an out of focus image of a chicken.

Preparing For The Next Pandemic

While the COVID-19 pandemic wasn’t an experience anyone wants to repeat, infections disease experts like [Dr. Pardis Sabeti] are looking at what we can do to prepare for the next one.

While the next pandemic could potentially be anything, there are a few high profile candidates, and bird flu (H5N1) is at the top of the list. With birds all over the world carrying the infection and the prevalence in poultry and now dairy agriculture operations, the possibility for cross-species infection is higher than for most other diseases out there, particularly anything with an up to 60% fatality rate. Only one of the 70 people in the US who have contracted H5N1 recently have died, and exposures have been mostly in dairy and poultry workers. Scientists have yet to determine why cases in the US have been less severe.

To prevent an H5N1 pandemic before it reaches the level of COVID and ensure its reach is limited like earlier bird and swine flu variants, contact tracing of humans and cattle as well as offering existing H5N1 vaccines to vulnerable populations like those poultry and dairy workers would be a good first line of defense. So far, it doesn’t seem transmissible human-to-human, but more and more cases increase the likelihood it could gain this mutation. Keeping current cases from increasing, improving our science outreach, and continuing to fund scientists working on this disease are our best bets to keep it from taking off like a meme stock.

Whatever the next pandemic turns out to be, smartwatches could help flatten the curve and surely hackers will rise to the occasion to fill in the gaps where traditional infrastructure fails again.

Continue reading “Preparing For The Next Pandemic”

This Week In Security: AirBorne, EvilNotify, And Revoked RDP

This week, Oligo has announced the AirBorne series of vulnerabilities in the Apple Airdrop protocol and SDK. This is a particularly serious set of issues, and notably affects MacOS desktops and laptops, the iOS and iPadOS mobile devices, and many IoT devices that use the Apple SDK to provide AirPlay support. It’s a group of 16 CVEs based on 23 total reported issues, with the ramifications ranging from an authentication bypass, to local file reads, all the way to Remote Code Execution (RCE).

AirPlay is a WiFi based peer-to-peer protocol, used to share or stream media between devices. It uses port 7000, and a custom protocol that has elements of both HTTP and RTSP. This scheme makes heavy use of property lists (“plists”) for transferring serialized information. And as we well know, serialization and data parsing interfaces are great places to look for vulnerabilities. Oligo provides an example, where a plist is expected to contain a dictionary object, but was actually constructed with a simple string. De-serializing that plist results in a malformed dictionary, and attempting to access it will crash the process.

Another demo is using AirPlay to achieve an arbitrary memory write against a MacOS device. Because it’s such a powerful primative, this can be used for zero-click exploitation, though the actual demo uses the music app, and launches with a user click. Prior to the patch, this affected any MacOS device with AirPlay enabled, and set to either “Anyone on the same network” or “Everyone”. Because of the zero-click nature, this could be made into a wormable exploit. Continue reading “This Week In Security: AirBorne, EvilNotify, And Revoked RDP”

Researchers Create A Brain Implant For Near-Real-Time Speech Synthesis

Brain-to-speech interfaces have been promising to help paralyzed individuals communicate for years. Unfortunately, many systems have had significant latency that has left them lacking somewhat in the practicality stakes.

A team of researchers across UC Berkeley and UC San Francisco has been working on the problem and made significant strides forward in capability. A new system developed by the team offers near-real-time speech—capturing brain signals and synthesizing intelligible audio faster than ever before.

Continue reading “Researchers Create A Brain Implant For Near-Real-Time Speech Synthesis”