Robotic Hand Uses Old CD-ROM Parts

Robotic arms and actuators are compelling things to watch, and as popular among the maker set as they are crucial to modern industry. [kthod2000] built a design of their own, which relies on parts salvaged from old CD-ROM drives. 

The arm itself is constructed of many components which appear to be 3D printed, with three main motors visible along its length. These look to be the eject motors harvested from several optical drives, which usefully come with a threaded screw on the output shaft that makes them perfect for a linear-drive application. Run by a TMC2208 driver via a microcontroller, the eject motors control the motion of several stages of the robot arm as it moves up and down.

The intention seems to be that one of these three-tiered assemblies could act as a single finger. Ganged up multiple times, this could allow the creation of something akin to a full five-digit robot hand. [kthod2000] has also done plenty of work on the software side of things that handles controlling the arm. The kinematics can all be simulated on screen in concert with the real motion of the arm.

We’ve seen similar builds before, too, like this plotter built out of scrap DVD drives. They’re a great source of quality electromechanical components for small projects, so it’s no surprise to see them put to work here. Video after the break.

Continue reading “Robotic Hand Uses Old CD-ROM Parts”

Auditory Brainstem Implants: The Other Bionic Hearing Device

You might have heard of the cochlear implant. It’s an electronic device also referred to as a neuroprosthesis, serving as a bionic replacement for the human ear. These implants have brought an improved sense of hearing to hundreds of thousands around the world.

However, the cochlear implant isn’t the only game in town. The auditory brain stem implant is another device that promises to bring a sense of sound to those without it, albeit by a different route.

Continue reading “Auditory Brainstem Implants: The Other Bionic Hearing Device”

The 512 Gigabyte Floppy Disk

There are times when a technology goes almost overnight as if in a puff of smoke, and others when they fade away gradually over time to the point at which their passing is barely noticed. So it is with removable media, while we still have the occasional USB flash disk or SD card , they do not come anywhere near the floppies, Zip disks, and CD-ROMs of the past in their numbers or ubiquity. If the floppy disk is just a save icon to you there’s still the chance to experience their retro charm though, courtesy of [Franklinstein]. He’s made a 3.5″ floppy disk that eschews 720 k, 1.44 M, or even 2.88 Mb, and goes all the way with a claimed 512 Gb capacity. We’re sure we can’t remember these from back in the day!

Of course as we can see in the video below he’s achieved neither an astounding feat of data compression nor a bleeding-edge method of storing bits in individual iron oxide molecules. Instead the floppy hinges open, and there’s a holder for micro SD cards where the disk itself would be. It’s a bit of fun, and we have to agree with him that it makes a very handy holder for micro SDs that can carry that much data. This sets us wondering though, whether it would be possible to somehow multiplex 14 micro SDs to a microcontroller on a PCB that could fit in a floppy shell. Perhaps an ESP32 could be a slow file server through a web interface?

He makes the point that 512 Gb of floppies would comfortably exceed the height of the tallest buildings were they stacked together, so at the very least this represents a space saving. If you’re looking for something slightly more functional and don’t mind modifying the drive, there’s always this classic approach to marrying a floppy with an SD card.

Continue reading “The 512 Gigabyte Floppy Disk”

Sharing Your Projects With The World: How?

So you just built a super-mega robot project that you want to share with the world. Super! But now you’re faced with an entirely new and different problem: documenting the process for the world to see. It’s enough to drive you back down into the lab.

  • What software should I use to create my project site?
  • How deep down the rabbit hole should I go when it comes to documenting the project?
  • What toppings do I want on my something-to-eat-while-hacking pizza?

We’re not going to get into the age old “pineapple or no pineapple” debate, but it’s important to note that the topic of how to share a project with the world has as many choices as toppings, and just as many opinions. The answer will always be simple: Do what works best for you!

The purpose of this article is to give some options to somebody considering sharing their projects online. There isn’t enough room to talk about every single option available to a hacker, so be sure to fill in your favorite options in the comments below. Let’s dive in!

Continue reading “Sharing Your Projects With The World: How?”

NYC Hangs Up Its Last Pay Phone

It was a melancholy Monday this week in the Big Apple as the last public payphone was uprooted from midtown Manhattan near Times Square and hauled away like so much garbage. That oughta be in a museum, you’re thinking, if you’re anything like us. Don’t worry; that’s exactly where the pair is headed.

This all started in 2014 when mayor de Blasio pledged to move the concept of street-level public utility into the future. Since then, NYC’s payphones have been systematically replaced with roughly 2,000 Link Wi-Fi kiosks that provide free domestic phone calls, device charging, and of course, Internet access. They also give weather, transit updates, and neighborhood news.

There are still a few private payphones around the city, so Superman still has places to change, and Bill and Ted can continue to come home. But if you need to make a phone call and have nowhere to turn, a Link kiosk is the way to go.

Although your Cap’n Crunch whistle hasn’t worked in decades, it’s still a sad day in history for the Jolly Wrencher, whose maiden message was about ye olde red boxen. We’re already seeing pay phones live on as art, so that’s a good sign.

Images via PIX11 and CBS News

It’s Easy To Mod Your Oculus VR Headset With Prescription Lenses

The Oculus brand VR headset and other similar devices allow you to view 3D worlds, but they can be blurry and unsatisfying if you’re a glasses wearer. Alternatively, you might be able to see fine, but find your glasses get in the way of a comfortable experience. Either way, you might want to integrate prescription lenses into your headset, and thankfully, there’s a straightforward way to do so thanks to [tanvach].

The way to do so is by using these 3D-printed lens adaptors. They take standard single vision lenses as designed for the Zenni #550021 round glasses frames, and let them fit nicely inside a Oculus Quest, Quest 2, or Rift S headset. [tanvach] supplies instructions on how to order the lenses for your own prescription, and notes that the key is to get the antireflective coating to reduce glare. And, if you don’t want to print your own adapters, you can source some pre-printed instead!

The adapters are a great way to improve your VR experience if you’re someone that typically relies on corrective lenses. Of course, it’s getting more popular to simply DIY your own headset these days, too. If you’ve got your own neat VR project in the works, don’t hesitate to let us know!

Thanks to [Keith Olson] for the tip!

Tame Your Flexible Filaments With This Belt-Drive Extruder

[Proper Printing] clearly enjoys pushing the boundaries of 3D printed materials, and sometimes this requires building custom 3D printers or at least the business end of them. Flexible filaments can be a bit of a pain to deal with, simply because most extruders are designed to push the filament into the hot end with a simple hobbed bolt (or pinch roller setup) and only work reliably due the rigidity of the plastic itself. Once you go flexible, the rigidity is reduced and the filament often deflects sideways and the extruder jams. The longer the filament path leading to the hotend, the harder it gets.  The dual belt drive extruder (they’re calling it ‘proper extruder’) grips the filament on two sides with a pair of supported belts, guiding it into the hotend without allowing it to deflect sideways. The extruder body and gears were resin printed (but, we checked — the design is suitable for FDM printing as well) proving that resin printing on modern printers, does indeed maintain adequate dimensional accuracy allowing the building of mechanisms, despite the naysayers! Continue reading “Tame Your Flexible Filaments With This Belt-Drive Extruder”