Inside The Mecanum Wheel

If you make anything that moves, like a robot, you quickly realize that turning can be a pain. That’s why there are a number of designs for wheels that can go in different directions. One of the most common is the Mecanum wheel. [Jeremy] explains how they work by filming them from below on a transparent table. You can see the enlightening video below.

If you haven’t done anything with omni wheels before, it is disconcerting to see wheels rotating one way causing the vehicle to move at a right angle to the rotation. But this is very useful when you build robots or — as he shows at the start of the video — a forklift.

Continue reading “Inside The Mecanum Wheel”

Mecanum-Wheeled Robot Chassis Takes Commands From PS4 Controller

Mecanum wheels are popular choices for everything from robots to baggage handling equipment in airports. Depending on their direction of rotation, they can generate forces in any planar direction, providing for great maneuverability. [ATOM] set about building just such a robot chassis, and learned plenty in the process.

The design is similar to those we’ve seen in the past. The robot has four mecanum wheels, each driven by its own motor. Depending on the direction of rotation of the various wheels, the robot can move forward, backwards, and even strafe left and right. Plus, it can effectively tank turn without excessive slippage thanks to the rollers on each wheel. An ESP32 serves as the brains of the ‘bot, allowing it to be readily remote controlled via a PS4 gamepad over Bluetooth.

If you’re looking to build a small robot chassis that’s great at moving about in tight, small spaces, this could be a great project to learn with. All the necessary parts are relatively easily available, and the PCB files can be had on GitHub.

If you like the idea of mecanum wheels but need something bigger, consider starting with a set of hoverboard wheel motors. Continue reading “Mecanum-Wheeled Robot Chassis Takes Commands From PS4 Controller”

3D Printed Mecanum Wheels For Hoverboard Motors

At this point, somebody taking the motors out of a cheap “hoverboard” and using them to power a scooter or remote controlled vehicle isn’t exactly a new idea. But in the case of the FPV rover [Proto G] has been working on, his choice of motors is only part of the story. The real interesting bit is the 3D printed omnidirectional Mecanum wheels he’s designed to fit the motors, which he thinks could have far reaching applications beyond his own project.

Now, that isn’t to say that the rover itself isn’t impressive. All of the laser cutting and sheet metal bending was done personally by [Proto G], and we love the elevated GoPro “turret” in the front that lets him look around while remotely driving the vehicle. Powered by a pair of Makita cordless tool batteries and utilizing hobby-grade RC parts, the rover looks like it would be a fantastic robotic platform to base further development on.

The Mecanum wheels themselves are two pieces, and make use of rollers pulled from far smaller commercially available wheels. This is perhaps not the most cost effective approach, but compared to the alternative of trying to print all the rollers, we see the advantage of using something off-the-shelf. If you’re not sure how to make these weird wheels work for you, [Proto G] has also released a video explaining how he mixes the RC channels to get the desired omnidirectional movement from the vehicle.

If you’re content with more traditional wheeled locomotion, we’ve previously seen how quickly a couple of second-hand hoverboards can be turned into a impressively powerful mobile platform for whatever diabolical plans you may have.

Continue reading “3D Printed Mecanum Wheels For Hoverboard Motors”

Building A Robot Rover For Those Tough Indoor Missions

Making an outdoor rover is easy stuff, with lots of folk having them doing their roving activities on beaches and alien worlds. Clearly the new frontier is indoor environments, a frontier which is helpfully being conquered by [Andreas Hoelldorfer]’s Mantis Rover.

OK, we’re kidding. This project started out life as a base for [Andreas]’s exquisite 3D printable robotic arm, but it’s even capable of carrying people around, as the embedded video after the break makes abundantly clear. The most eye-catching feature of the Mantis Rover are its Mecanum wheels, which allow it to move in any direction, and is perfect for those tight spots where getting stuck would be really awkward.

The Mecanum wheels are 3D printed, making the motors and the associated controllers the more complicated part of this package. Plans for the wheels involve casting some kind of rubber, to make the wheels more gentle on the floors it has to drive on. The electronics include TMC 5160 motor drivers and an STM32F407VET6 MCU, as well as a W5500-equipped custom ‘Robot Shield’.

It seems that there are still a lot of tweaks underway to make the project even more interesting. Maybe it’s the perfect foundation for your next indoor roving sessions at the office or local hackerspace?

Continue reading “Building A Robot Rover For Those Tough Indoor Missions”

Pushing 3D Printed Wheels And Transmissions To The Limit

What do you do if you want a robot with great mobility? Walking is hard, and wheels are good enough, especially if you use the ‘wheels within wheels’ Mecanum setup. But you need torque, too. That’s what makes this entry into the Hackaday Prize so fantastic. It’s a Mecanum wheel of sorts, with an integrated gear set that produces a phenomenal amount of torque using a small, cheap stepper motor.

The wheel itself if 3D printed and fully parametric, using nylon weed wacker filament for the treads. This allows the wheel to scoot back and forth like a Mecanum wheel, or at the very least like one of those hyper mobile wheeled robots you see from time to time. It goes backwards, forwards, and side to side, and also has a zero turn radius.

A 3D printed Mecanum wheel is great, but how on earth do you drive it? That problem is solved with this hybrid planetary/strain-wave  3D-printed gear set. [Daren] has created a very compact ‘single’ stage gear set that fits right on top of a stepper motor. It’s thin, flat, and has a gear reduction of about 66:1. That’s a lot of torque in a very small package. Both of these projects are combined, and together they represent a freaky wheel with a lot of torque.

Even though [Daren] doesn’t have a robot in mind for this build, these are most certainly the building blocks of a fantastic robot, and a great entry in the Hackaday Prize.

Continue reading “Pushing 3D Printed Wheels And Transmissions To The Limit”

Laser-Cut Mecanum Wheel For The Budget Roboticist

For the budding roboticist, omniwheels might be the next step in design patterns from your everyday “getting-started” robot kits. These wheels consist of tiny rollers that sit on the perimeter of the wheel and enable the wheel to freely slide laterally. With independent motor control of each wheel, a platform can freely locomote sideways by sliding on the rollers. You might think: “a wheel made of wheels? That sounds pricey…”–and you’d be right! Fear not, though; the folks at [Incubhacker] in Belgium have you covered with a laser-cut design that’s one-click away from landing on your workbench.

For anyone who’s tried to reliably mate flat laser-cut parts at an angle, we can tell you it’s no easy feat. The design here triumphs as both simple and reliable. Not only do they solve this problem elegantly, they also manage to create a design that will bear the load of a robot chassis that will travel with it. Laser-cut designs also usually suffer from a poor range of material options. Here the actual rollers need a bit more grip than what the plywood can provide. They also solve this problem effectively as well too, relying on heat-shrink tubing to provide the traction expected from a conventional wheel.

In the video below, [Incubhacker] takes you through the step-by process of making your own come to life. We’ve certainly seen some impressive laser-cut omniwheels in the past, but we like the simplicity of design combined with the composition of parts that probably already live on our workbenches.

Continue reading “Laser-Cut Mecanum Wheel For The Budget Roboticist”

Hackaday’s Omaha Mini Maker Faire Roundup

The 2nd annual Omaha Mini Maker Faire wasn’t our first rodeo, but it was nonetheless a bit surprising . Before we even made it inside to pay our admission to the Omaha Children’s Museum, I took the opportunity to pet a Transylvanian Naked Neck chicken at one of the outdoor booths. The amiable fowl lives at City Sprouts, an Omaha community farming collective in its 20th year of operation. There seemed to be a theme of bootstrappy sustainability among the makers this year, and that’s great to see.

Just a few feet away sat a mustard-colored 1975 Chevy pickup with a food garden growing in its bed. This is Omaha’s truck farm, an initiative that seeks to educate the city’s kids in the ways of eating locally and growing food at home.  On a carnivorous note, [Chad] from Cure Cooking showed my companion and me the correct way to dry-cure meats using time-honored methods.

Continue reading “Hackaday’s Omaha Mini Maker Faire Roundup”