Hackaday Podcast Episode 293: The Power Of POKE, Folding Butterflies, And The CRT Effect

This week on the Podcast, Hackaday’s Elliot Williams and Kristina Panos joined forces to bring you the latest news, mystery sound, and of course, a big bunch of hacks from the previous week.

First up in the news: we’ve extended the 2024 Supercon Add-On contest by a week! That’s right, whether you were held up by Chinese fall holidays or not, here’s your chance to get in on this action.

A square image with the Supercon 8 Add-On Contest art featuring six SAOs hanging from lanyards.We love to see the add-ons people make for the badge every year, so this time around we’re really embracing the standard. The best SAOs will get a production run and they’ll be in the swag bag at Hackaday Europe 2025.

What’s That Sound pretty much totally stumped Kristina once again, although she kind of earned a half shirt. Can you get it? Can you figure it out? Can you guess what’s making that sound? If you can, and your number comes up, you get a special Hackaday Podcast t-shirt.

Then it’s on to the hacks, beginning with what actually causes warping in 3D prints, and a really cool display we’d never heard of. Then we’ll discuss the power of POKE when it comes to live coding music on the Commodore64, and the allure of CRTs when it comes to vintage gaming. Finally, we talk Hackaday comments and take a look at a couple of keyboards.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Download in DRM-free MP3 and savor at your leisure.

Continue reading “Hackaday Podcast Episode 293: The Power Of POKE, Folding Butterflies, And The CRT Effect”

Building A ZX Spectrum Using Only New Parts

Ah, the Sinclair ZX Spectrum. A popular computer in Britain and beyond, but now rather thin on the ground. If you can’t find one, fear not, for now—you can apparently build a new one with new parts! [TME Retro] is here to demonstrate how.

Before you get excited, no—Sinclair has not risen from the dead. Instead, it’s simply down to the state of the retrocomputing community. There are enough reproduction parts and components out there for the ZX Spectrum that it’s now possible to assemble the whole computer from new bits. You can get new cases and new mechanical keyboards, and a 100% compatible motherboard in the form of the Harlequin board. The latter even reproduces the unobtainable Spectrum ULA glue logic chip in raw logic!

It’s neat to see the ZX Spectrum live on decades after the production lines ground to a halt. We’ve seen similar feats achieved with the legendary Commodore 64; you’d think we had enough of them given they were the best-selling computer of all time. Video after the break.

Continue reading “Building A ZX Spectrum Using Only New Parts”

Hacker Chris Edwards demonstrating his wireless Amiga

Retro Wi-Fi On A Dime: Amiga’s Slow Lane Connection

In a recent video, [Chris Edwards] delves into the past, showing how he turned a Commodore Amiga 3000T into a wireless-capable machine. But forget modern Wi-Fi dongles—this hack involves an old-school D-Link DWL-G810 wireless Ethernet bridge. You can see the Amiga in action in the video below.

[Chris] has a quirky approach to retrofitting. He connects an Ethernet adapter to his Amiga, bridges it to the D-Link, and sets up an open Wi-Fi network—complete with a retro 11 Mbps speed. Then again, the old wired connection was usually 10 Mbps in the old days.

To make it work, he even revived an old Apple AirPort Extreme as a supporting router since the old bridge didn’t support modern security protocols. Ultimately, the Amiga gets online wirelessly, albeit at a leisurely pace compared to today’s standards. He later demonstrates an upgraded bridge that lets him connect to his normal network.

We’ve used these wireless bridges to put oscilloscopes and similar things on wireless, but newer equipment usually requires less work even if it doesn’t already have wireless. We’ve also seen our share of strange wireless setups like this one. If you are going to put your Amgia on old-school networking, you might as well get Java running, too.

Continue reading “Retro Wi-Fi On A Dime: Amiga’s Slow Lane Connection”

A VIC-20 With No VIC

[DrMattRegan] has started a new video series to show his latest recreation of a Commodore VIC-20. The core of the machine is [Ben Eater’s] breadboard 6502 design. To make it a VIC-20, though, you need a “VIC chip” which, of course, is no longer readily available. Many people, of course, use FPGAs or other programmable logic to fake VIC chips. But [Matt] will build his with discrete TTL logic. You can see the first installment of the series below.

Continue reading “A VIC-20 With No VIC”

C64 Gets A Graphics Upgrade Courtesy Of Your Favorite Piano Manufacturer

The Commodore 64 was quite a machine in its time, though a modern assessment would say that it’s severely lacking in the graphical department. [Vossi] has whipped up a bit of an upgrade for the C64 and C128, in the form of a graphics expansion card running Yamaha hardware.

As you might expect, the expansion is designed to fit neatly into a C64 cartridge slot. The card runs the Yamaha V9958—the video display processor known for its appearance in the MSX2+ computers. In this case, it’s paired with a healthy 128 kB of video RAM so it can really do its thing. The V9958 has an analog RGB output that can be set for PAL or NTSC operation, and can perform at resolutions up to 512×212 or even 512×424 interlaced. Naturally, it needs to be hooked directly up to a compatible screen, like a 1084, or one with SCART input. [Vossi] took the time to create some demos of the chip’s capabilities, drawing various graphics in a way that the C64 couldn’t readily achieve on its own.

It’s a build that almost feels like its from an alternate universe, where Yamaha decided to whip up a third-party graphics upgrade for the C64. That didn’t happen, but stranger team ups have occurred over the years.

[Thanks to Stephen Walters for the tip!]

New Release Of Vision Basic: Hot New Features!

As the Commodore 64 ages, it seems to be taking on a second life. Case in point: Vision BASIC is a customized, special version of the BASIC programming language with a ton of features to enable Commodore 64 programs to be written more easily and with all sorts of optimizations. We’ve tested out both the original 1.0 version of Vision BASIC, and now with version 1.1 being released there are a whole host of tweaks and updates to make the experience even better!

One of the only limitation of Vision BASIC is the requirement for expanded RAM. It will not run on an unexpanded C64 — but the compiled programs will, so you can easily distribute software made using Vision on any C64. A feature introduced in version 1.1 is support for GeoRAM, a different RAM expansion cartridge, and modern versions of GeoRAM like the NeoRAM which has battery-backed RAM. This allows almost instantaneous booting into the Vision BASIC development environment.

Some of the standout features include a doubling of compilation speed, which is huge for large programs that take up many REU segments in source form. There are new commands, including ALLMOBS for setting up all sprites with a single command; POLL to set up which joystick port is in use; CATCH to wait for a particular scanline; and plenty more! Many existing commands have been improved as well. As in the original version of Vision BASIC, you can freely mix 6510 assembly and BASIC wherever you want. You can use the built-in commands for bitmaps, including panning, collision detection, etc., or you can handle it in assembly if you want! And of course, it comes with a full manual — yes, a real, printed book!

One of the nice features of Vision BASIC is the customization of the development environment. On the first run, after agreeing to the software terms, you enter your name and it gets saved to the Vision BASIC disk. Then, every time you start the software up, it greets you by name! You can also set up a custom colour scheme, which also gets saved. It’s a very pleasant environment to work in. Depending on how much additional RAM you have, you can hold multiple program segments in different RAM banks. For example, you could have all your source code in one bank, all your bitmaps and sprites in another, and your SID tunes in yet another. The compiler handles all this for you when you go to compile the program to disk, so it’s easy to keep large programs organized and easy to follow.

If you’ve always wanted to write a game or application for the C64 but just didn’t know how to get started, or you felt daunted at having to learn assembly to do sprites and music, Vision BASIC is a great option. You will be blown away at the number of commands available, and as you become more experienced you can start to sprinkle in assembly to optimize certain parts of your code if desired.

Exploring TapTo NFC Integration On The MiSTer

[Ken] from the YouTube channel What’s Ken Making is back with another MiSTer video detailing the TapTo project and its integration into MiSTer. MiSTer, as some may recall, is a set of FPGA images and a supporting ecosystem for the Terasic DE10-Nano FPGA board, which hosts the very capable Altera Cyclone V FPGA.

The TeensyROM C64 cart supports TapTo

The concept behind TapTo is to use NFC cards, stickers, and other such objects to launch games and particular key sequences. This allows an NFC card to be programmed with the required FPGA core and game image. The TapTo service runs on the MiSTer, waiting for NFC events and launching the appropriate actions when it reads a card. [Ken] demonstrates many such usage scenarios, from launching games quickly and easily with a physical ‘game card’ to adding arcade credits and even activating cheat codes.

As [Ken] points out, this opens some exciting possibilities concerning physical interactivity and would be a real bonus for people less able-bodied to access these gaming systems. It was fun to see how the Nintendo Amiibo figures and some neat integration projects like the dummy floppy disk drive could be used.

TapTo is a software project primarily for the MiSTer system, but ports are underway for Windows, the MiSTex, and there’s a working Commodore 64 game loader using the TeensyROM, which supports TapTo. For more information, check out the TapTo project GitHub page.

We’ve covered the MiSTer a few times before, but boy, do we have a lot of NFC hacks. Here’s an NFC ring and a DIY NFC tag, just for starters.

Continue reading “Exploring TapTo NFC Integration On The MiSTer”