London Gatwick Airport Shuts Its Doors Due To Drone Sighting

If you could pick a news story you would prefer not to be woken with, it’s likely that a major airport being closed due to a drone sighting would be high on the list. But that’s the news this morning: London’s Gatwick airport has spent most of the night and into the morning closed due to repeated sightings. Police are saying that the flights appear to have been deliberate, but not terror-related.

We’ve written on reports of drone near-misses with aircraft here back in 2016, and indeed we’ve even brought news of a previous runway closure at Gatwick. But it seems that this incident is of greater severity, over a much longer period, and even potentially involving more than one machine. The effect that it could have on those in our community who are multirotor fliers could be significant, and thus it is a huge concern aside from the potential for mishap in the skies above London’s second largest airport.

It is safe to say that if there was indeed a multirotor above Gatwick last night then its operator should be brought to justice and face the appropriate penalty without delay. Responsible fliers are painfully aware of the rules involving multirotor flight, and that airports of any description are strictly off-limits. It matters not whether this was a drunken prank or a premeditated crime, we hope you’ll all join us in saying that anybody flying outside the law should be reported to the authorities.

Continue reading “London Gatwick Airport Shuts Its Doors Due To Drone Sighting”

Organic Ornithopter Sensor Drone

Bees. The punchline to the title is bees carrying sensors like little baby bee backpacks. We would run out of fingers counting the robots which emulate naturally evolved creatures, but we believe there is a lot of merit to pirating natural designs, but researchers at the University of Washington cut out the middle-man and put their sensors right on living creatures. They measured how much a bee could lift, approximately 105 milligrams, then built a sensor array lighter than that. Naturally, batteries are holding back the design, and the rechargeable lithium-ion is more than half of the weight.

When you swap out brushless motors for organics, you gain and lose some things. You lose the real-time control, but you increase the runtime. You lose the noise, but you also lose the speed. You increase the range, but you probably wind up visiting the same field over and over. If your goal is to monitor the conditions of flowering crops, you may be ready to buy and install, but for the rest of us, dogs are great for carrying electronics. Oh yes. Cats are not so keen. Oh no.

Tiny Drone Racing Gates Use Up Those Filament Scraps

Drone racing comes in different shapes and sizes, and some multirotor racers can be very small indeed. Racing means having gates to fly though, and here’s a clever DIY design by [Qgel] that uses a small 3D printed part and a segment of printer filament as the components for small-scale drone racing gates.

The base is 3D printed as a single piece and is not fussy about tolerances, meanwhile the gate itself is formed from a segment of printer filament. Size is easily adjusted, they disassemble readily, are cheap to produce, and take up very little space. In short, perfect for its intended purpose.

Races benefit from being able to measure lap time, and that led to DIY drone racing transponders, complete with a desktop client for managing the data. Not all flying is about racing, but pilots with racing skills were key to getting results in this Star Wars fan film that used drones. Finally, those who still feel that using the word “drone” to include even palm-sized racers is too broad of a use may be interested in [Brian Benchoff]’s research into the surprisingly long history of the word “drone” and its historically broad definition.

An Englishman’s Home Is His (Drone-Defended) Castle

Retiring to the garden for a few reflective puffs on the meerschaum and a quick shufti through the Racing Post, and the peace of the afternoon is shattered by the buzz of a drone in the old airspace,what! What’s a chap to do, let loose with both barrels of the finest birdshot from the trusty twelve-bore? Or build a missile battery cunningly concealed in a dovecote? The latter is what [secretbatcave] did to protect his little slice of England, and while we’re not sure of its efficacy we’re still pretty taken with it. After all, who wouldn’t want a useless garden accoutrement that conceals a fearsome 21st century defence system?

The basic shell of the dovecote is made from laser cut ply, in the shape of an innocuous miniature house. The roof is in two sliding sections which glide apart upon servo-controlled drawer runners, and concealed within is the rocket launcher itself on a counterweighted arm to lift it through the opening. The (toy) rocket itelf is aimed with a camera pan/tilt mechanism,and the whole is under the control of a Raspberry Pi

It’s understood that this is a rather tongue-in-cheek project, and the chances of any multirotors falling out of the sky are somewhat remote. But it does serve also to bring a bit of light back onto a theme Hackaday have touched upon in previous years, that of the sometimes uneasy relationship between drone and public.

DHL Wingcopter Medicine Drone

Parcelcopter Drone Project Delivers In Rough Terrain

It’s a known fact that the last mile is also the longest mile in the parcel delivery service. The further removed from a hub city a delivery location is, the more required stops in between. Every part of the process slows to a glacial pace when the drop-off spot is inaccessible by land or air. Now apply this in the case of a medical emergency, and timing is everything.

Enter the joint project between [DHL and Wingcopter] dubbed Parcelcopter 4.0. The half plane, half helicopter drone design was recently tested over a six month period by making medical supply drops to Ukerewe island located in the middle of Lake Victoria. The remote island is home to roughly 400,000 people and many areas around the isle remain out of reach to traditional delivery vehicles. The island’s closest southern port is separated from mainland Tanzania by a four hour trip by barge and over six hours by road which makes drone delivery a potentially life saving option.

The Wingcopter drone itself is capable of vertical take off and landing (see 1:53 in the video below) while holding up to 9 lbs inside the thermally insulated cargo hold on the underside of the craft. It is controlled via 3G and/or 4G LTE, and according to the manufacturer website is capable of flying up to 60 miles on a single charge. Tests showed the drone made the nearly 40 mile trip across Lake Victoria in an average of 40 minutes.

It is interesting to see a real world commercial application seemingly ready to meet the needs of a vastly under served community. There are certainly many tests left to go before drone delivery goes into wider use, but thanks to this project the Parcelcopter 4.0 is 1400 air miles closer to that future.

Continue reading “Parcelcopter Drone Project Delivers In Rough Terrain”

Disney Builds Autonomous Graffiti Drone

Ever seen a bit of graffiti in a strange location and wondered how the graffiti artist got up there? It might have been a drone rather than an athletic teen. Disney research has just published an interesting research paper that describes the PaintCopter: an autonomous drone fitted with a can of spray paint on a pan-tilt arm. It’s more than just sticking a paint can on a stick, though: they built a system that can scan a 3D surface then calculate how to paint a design on it, and then do it autonomously. The idea is that they want to use this to paint difficult-to-reach bits of theme parks, or to add seasonal decorations without sending someone up a ladder.

Continue reading “Disney Builds Autonomous Graffiti Drone”

Drone + Ground Penetrating Radar = Mine Detector?

Most civilized nations ban the use of landmines because they kill indiscriminately, and for years after they are planted. However, they are still used in many places around the world, and people are still left trying to find better ways to find and remove them. This group is looking at an interesting new approach: using ground-penetrating radar from a drone [PDF link]. The idea is that you send out a radio signal, which penetrates into the ground and bounces off any objects in there. By analyzing the reflected signal, so the theory goes, you can see objects underground. Of course, it gets a bit more complicated than that (especially when signals get reflected by the surface and other objects), but it’s a well-established technique even though this is the first time we’ve seen it mounted on a drone. It’s a great idea: the drone allows you to have the transmitting and receiving antennas separated with both mounted on pole extensions, meaning that the radio platform can move. Combined with a pre-planned flight, and we’re looking at a system that can fly over an area, scan what is under the ground, and store the data for analysis.

[Via RTL-SDR]

Continue reading “Drone + Ground Penetrating Radar = Mine Detector?”