Hackaday Podcast 071: Measuring Micrometers, The Goldilocks Fit, Little Linear Motors, And 8-bit Games On ESP32

Hackaday editors Mike Szczys and Elliot Williams fan through a fantastic week of hacking. Most laser cutters try to go bigger, but there’s a minuscule one that shows off a raft of exotic components you’ll want in your bag of tricks. Speaking of tricks, this CNC scroll saw has kinematics the likes of which we’ve never seen before — worth a look just for the dance of polar v. Cartesian elements. We’ve been abusing printf() for decades, but it’s possible to run arbitrary operations just by calling this Turing-complete function. We wrap the week up with odes to low-cost laptops and precision measuring.

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (60 MB or so.)

Continue reading “Hackaday Podcast 071: Measuring Micrometers, The Goldilocks Fit, Little Linear Motors, And 8-bit Games On ESP32”

Now This Is A Maker’s PCB Shaker

Anyone who has ever etched their own PCB knows that the waiting is the hardest part. Dissolving copper in ferric chloride takes time, much like developing a Polaroid picture. And although you really should not shake a fresh Polaroid to speed up development, the PCB etching process thrives on agitation. Why wait an hour when you can build a simple PCB shaker and move on to drilling and/or filling in 10 minutes?

We love that [ASCAS] was probably able to build this without reaching past the the spare parts box and the recycling bin. There’s no Arduino or even a 555 — just a 12 VDC geared motor, a DC-DC buck converter, and an externalized pot to control the speed of the sloshing.

It’s hard to choose a favorite hack here between the hinge used to rock this electric seesaw and the crankshaft/armature [ASCAS] made from a sandwich spread lid and a Popsicle stick. Everything about this build is beautiful, including the build video after the break.

Did you know that unlike ferric chloride, copper chloride can be recharged and reused? Here’s a one-stop etching station that does just that.

Continue reading “Now This Is A Maker’s PCB Shaker”

Apollo 11 Trig Was Brief

In this day and age where a megabyte of memory isn’t a big deal, it is hard to recall when you had to conserve every byte of memory. If you are a student of such things, you might enjoy an annotated view of the Apollo 11 DSKY sine and cosine routines. Want to guess how many lines of code that takes? Try 35 for both.

Figuring out how it works takes a little knowledge of how the DSKY works and the number formats involved. Luckily, the site has a feature where you can click on the instructions and see comments and questions from other reviewers.

Continue reading “Apollo 11 Trig Was Brief”

Solder To Aluminum

If you’ve ever tried to solder to aluminum, you know it isn’t easy without some kind of special technique. [SimpleTronic] recently showed a method that chemically plates copper onto aluminum and allows you to solder easily. We aren’t chemists, so we aren’t sure if this is the best way or not, but the chemicals include salt, copper sulfate (found in pool stores), ferric chloride as you’d use for etching PCBs, and water.

Once you have bare aluminum, you prepare a solution from the copper sulfate and just a little bit of ferric chloride. Using salt with that solution apparently removes oxidation from the aluminum. Then using the same solution without the salt puts a copper coating on the metal that you can use for soldering. You can see a video of the process below.

Continue reading “Solder To Aluminum”

Retrotechtacular: Wire Splicing The Army Way

For those of us who started experimenting with electricity when we were very young, one of the essential first skills was learning how to twist wires together. It seems like there’s not much to learn, but after a few failed attempts with nothing but your fingers, you learned a few tricks that are probably still with you to this day. It’s not surprising, then, that there’s an official US Army way to twist wires together, as this Signal Corps training film from 1941 shows.

Considering that the Signal Corps had nearly 80 years of experience with wiring battlefield communications at the outbreak of World War II, their methods were pretty solid, as were their materials. The film mainly concerns the splicing together of rolls of type W110-B field wire, used by the Signal Corps to connect command posts to forward positions, observation posts, and the rear echelons. More often than not laid directly upon the ground, the wire had to be tough, waterproof, and conductive enough that field telephone gear would still work over long loop lengths. As such, the steel-reinforced, rubber-and-fabric clad cable was not the easiest stuff to splice. Where we might cringe at the stresses introduced by literally tying a conductor in knots, it was all part of the job for the wire-laying teams that did the job as quickly as possible, often while taking enemy fire.

The film also has a section on splicing a new line into an existing, in-service circuit, using a T-splice and paying careful attention to the topology of the knots used, lest they come undone under stress. It’s fascinating how much thought was put into something as mundane as twisting wires, but given the stakes, we can appreciate the attention to detail.

Continue reading “Retrotechtacular: Wire Splicing The Army Way”

A Beginner’s Guide To Lithium Rechargeable Batteries

Batteries were once heavy, awkward things, delivering only a limp amount of current for their size and weight. Thankfully, over time, technology has improved, and in 2020, we’re blessed with capable, high-power lithium polymer batteries that can provide all the power your mobile project could possibly need. There are some considerations one must make in their use however, so read on for a primer on how to properly use LiPos in your project!

So Many Types!

With the first commercial lithium-ion battery entering the market in 1991, the (nearly) 30 years since have seen rapid development. This has led to a proliferation of different technologies and types of battery, depending on construction and materials used. In order to treat your batteries properly, it’s important to know what you’ve got, so paying attention to this is critical. Continue reading “A Beginner’s Guide To Lithium Rechargeable Batteries”

Knitting Machine Rebuild Takes It To The Next Level

Those of us who to textile work may own a sewing machine and even if we’re really into it and have the funds, an overlocker. But there’s another machine in that field that few of us will have, and that’s a knitting machine. These machines have a sliding carriage over a long array of needles, and even the cheaper ones are way more expensive than for example a pretty decent oscilloscope. [Irene Wolf] has a Passap E6000 computerised knitting machine that is by no means an inexpensive one, and she’s made significant improvement to it by giving it new brains, a new motor controller, and replacing the mechanical rear needle bed with a set of computerised ones from the front of another machine.

In her write-up she goes in depth into the arrangement of sensors and electromagnets that operate the machine. She started with a lot of inspiration from a project at Hackerspace Bamberg, but used all the available Passap sensors as inputs where they had used only one. She has two Arduino M0 boards handling the inputs and a Raspberry Pi with control and user interface, and has posted some videos of the system in action one of which we’ve placed below the break.

We probably wouldn’t have had the courage to fearlessly hack such a high-value machine, and we’re particularly impressed by the result. The write-up is particularly interesting not only for the work itself, but for the detailed insight it gives to the workings of these machines. The best news – she’s not finished and there will be more installments.

While you’re waiting for more, remember this is by no means the first hacked knitting machine we’ve brought you.

Continue reading “Knitting Machine Rebuild Takes It To The Next Level”