Size comparison of a 27 in CRT TV next to a 43 in CRT TV.

Retrotechtacular: Quest For The “Big Boy” CRT Finds New Home In Mini Doc

To celebrate the twentieth anniversary of their Trinitron line of televisions, Sony launched the KX-45ED1. At forty three inches the screen on this particular model made it the largest tube television in the world, and it came with the kind of price tag that if you need to ask…you can’t afford it (likely around $100,000 USD today). Three decades later, only two of these mythical displays were thought to exist and [shank] chronicled his quest to acquire one of the last remaining “Big Boys” in the mini documentary below.

As it turns out, one of these gigantic tube televisions was located on the second floor of a restaurant in Japan still sitting in the same place it was installed in 1989. It hadn’t moved in the intervening decades, because the television and its specialized support stand weighed over 500 pounds. Having an object that heavy physically moved down a flight of stairs would seem to be the most formidable challenge for most, but compounding the issue for [shank] was that the building housing this colossal CRT was set to be permanently closed in less than a week.

With next to no time to arrange an international flight, [shank] utilized the power of internet to ask for help from anyone currently living near the “Big Boy” CRT’s soon-to-be final resting place. It just so happened that a fellow retro tech enthusiast based in Japan saw the post, and traveled over an hour by train at a moment’s notice to aid [shank]. The heartwarming story of total strangers united by a common interest of preserving a rare piece of tech history is certainly worth a watch. Let alone the goofy size comparison footage of the smallest CRT display sitting on top of the biggest one.

Continue reading “Retrotechtacular: Quest For The “Big Boy” CRT Finds New Home In Mini Doc”

Calling Pink Floyd

[Corelatus] said recently that “someone” asked them to identify the phone signals in the 1982 film The Wall, based on the Pink Floyd song of the same name. We suspect that, like us, that someone might have been more just the hacker part of the brain asserting itself. Regardless, the detective work is fascinating, and you can learn a lot of gory details about phone network in-band signaling from the post.

The analysis is a bit more difficult because of the year the film was made. At that time, different countries used slightly different tone signaling standards. So after generating a spectrogram, the job was to match the tones with known standards to see which one best fit the data.

Continue reading “Calling Pink Floyd”

Watch Any Video On Your Game Boy, Via Link Cable

Game Boys have a link cable that lets two of them play together. You know, to battle with a friend’s Pokemon and stuff like that. But who says that it should be limited to transmitting only what Big N wants you to?

[Chromalock] wrote a custom GB program that takes in data over the link cable, and displays it on the screen as video, as fast as it can be sent. Add in a microcontroller, a level shifter, and software on the big computer side, and you can hook up your Game Boy Color as a normal video device and send it anything you want, from a webcam to any program that outputs video.

Well, almost. The biggest limitation is the data link cable, of course. On the older Game Boys, the link cable is apparently only good for 8 kHz, while the Color models can pull a not-quite-blistering 512 kHz. Still, that’s enough for 60 fps in a low-res black and white mode, or a slow, screen-tearing high-res color experience. You pick your poison.

There are gotchas that have to do with the way the GB displays palettes that get left as “to-do” on the software side. There is room for improvement in hardware too. (GB Link looks like SPI to us, and we’d bet you can push the speeds even higher with clever GB-side code.) In short, this is an awesome demo that just invites further hacking.

If you want to know more about the Game Boy to get started, and maybe even if you don’t, you absolutely must watch The Ultimate Game Boy Talk. Trust us on this one.

Continue reading “Watch Any Video On Your Game Boy, Via Link Cable”

Apollo Lunar Surface Experiments Package of the Apollo 16 mission (Credit: NASA)

ALSEP: Apollo’s Modular Lunar Experiments Laboratory

Down-Sun picture of the RTG with the Central Station in the background. (Credit: NASA)
Down-Sun picture of the RTG with the Central Station in the background. (Credit: NASA)

Although the US’ Moon landings were mostly made famous by the fact that it featured real-life human beings bunny hopping across the lunar surface, they weren’t there just for a refreshing stroll over the lunar regolith in deep vacuum. Starting with an early experimental kit (EASEP) that was part of the Apollo 11 mission, the Apollo 12 through Apollo 17 were provided with the full ALSEP (Apollo Lunar Surface Experiments Package). It’s this latter which is the subject of a video by [Our Own Devices].

Despite the Apollo missions featuring only one actual scientist (Harrison Schmitt, geologist), these Bendix-manufactured ALSEPs were modular, portable laboratories for running experiments on the moon, with each experiment carefully prepared by scientists back on Earth. Powered by a SNAP-27 radioisotope generator (RTG), each ALSEP also featured the same Central Station command module and transceiver. Each Apollo mission starting with 12 carried a new set of experimental modules which the astronauts would set up once on the lunar surface, following the deployment procedure for that particular set of modules.

Although the connection with the ALSEPs was terminated after the funding for the Apollo project was ended by US Congress, their transceivers remained active until they ran out of power, but not before they provided years worth of scientific data on many aspects on the Moon, including its subsurface characteristics and exposure to charged particles from the Sun. These would provide most of our knowledge of our Moon until the recent string of lunar landings by robotic explorers.

Heading image: Apollo Lunar Surface Experiments Package of the Apollo 16 mission (Credit: NASA)

Continue reading “ALSEP: Apollo’s Modular Lunar Experiments Laboratory”

Camera Slider Uses Repositionable Rail To Do Rotational Moves

You can buy motorized camera sliders off-the-shelf, but they’re pretty costly. Alternatively, you can make one yourself, and it’s not even that hard if you’re kitted out with a 3D printer. [Creative 3D Printing] did just that with a nifty design that adds rotation into the mix. Check it out in the video below.

Why should a camera get all the fun? Try your phone.

The basic slider is built out of 3D-printed components and some good old aluminum extrusion. A small 12-volt motor trucks the camera cart back and forth using a leadscrew. It’s torquey enough and slow enough that there isn’t much need for more advanced control—the motor just does the job. There’s also a limit switch set up to trigger a neat auto-reverse function.

The neat part, though, is the rotational mechanism. A smooth steel rod is attached to the slider’s housing, which can be set up in a straight line or aligned diagonally if desired. In the latter case, it rotates the mounting on the camera cart via a crank, panning the camera as it moves along the slider’s trajectory.

It’s a mechanically sophisticated design and quite unlike most of the camera sliders we feature around these parts.

Continue reading “Camera Slider Uses Repositionable Rail To Do Rotational Moves”

students overlooking their rope-traversing robots

Crawler Challenge: Building Rope-Traversing Robots

Rope-climbing robots are the stuff of engineering dreams. As kids, didn’t we all clutter our family home with constructions of towers and strings – Meccano, or Lego – to have ziplines spanning entire rooms? Good for the youngsters of today, this has been included in school curricula. At the University of Illinois, the ME 370 students have been given the task of building a robot that can hang from a rope and walk across it—without damaging the rope. The final projects show not only how to approach tricky design problems, but also the creative solutions they stumbled upon.

Imagine a tiny, rope-climbing walker in your workshop—what could you create?

The project is full of opportunities for those thinking out of the box. It’s all about the balance between innovation and practicality: the students have to come up with a solution that can move at least 2 meters per minute, fits in a shoebox, and has some creative flair—no wheels allowed! The constraints provide an extra layer of challenge, but that’s where the fun lies. Some students use inverted walkers, others take on a more creature-like approach. The clever use of motors and batteries shows just how far simple tech can go when combined with a bit of engineering magic.

This project is a fantastic reminder that even small, seemingly simple design challenges can lead to fascinating creations. It invites us adults to play, and by that, we learn: a win-win situation. You can find the original article here, or grab some popcorn and watch the video below.

Continue reading “Crawler Challenge: Building Rope-Traversing Robots”

A Pi Pico Makes A Spectrum Laptop

There are many retrocomputer emulation projects out there, and given the relative fragility of the original machines as they enter their fifth decade, emulation seems to be the most common way to play 8-bit games. It’s easy enough to load one on your modern computer, but there are plenty of hardware options, too. “The computer we’d have done anything for back in 1983” seems to be a phrase many of them bring to mind, but it’s so appropriate because they keep getting better. Take [Stormbytes1970]’s Pi Pico-powered Sinclair ZX Spectrum mini laptop (Spanish language, Google Translate link), for example. It’s a slightly chunky netbook that’s a ZX Spectrum, and it has a far better keyboard than the original.

On the PCB is the Pico, the power supply circuitry, an SD card, and a speaker. But it’s when the board is flipped over that the interesting stuff starts. In place of the squidgy rubber keyboard of yore, it has a proper keyboard,. We’re not entirely sure which switch it uses, but it appears to be a decent one, nevertheless. The enclosure is a slick 3D-printed sub-netbook for retro gaming on the go. Sadly, it won’t edit Hackaday, so we won’t be slipping one in the pack next time we go on the road, but we like it a lot.

Continue reading “A Pi Pico Makes A Spectrum Laptop”