Password Extraction Via Front Doorbell

Not a day goes by without another IoT security hack. If you’re wondering why you don’t want your front doorbell connected to the Internet, this hack should convince you.

The hack is unfathomably stupid. You press the button on the back of the unit that pairs the doorbell with your home WiFi network, and it transmits the password in the clear. Sigh. It’s since been fixed, and we suppose that’s a good thing, but we can’t resist thinking for a moment about an alternative implementation.

Imagine, like all previous non-IoT wireless doorbells, that the doorbell transmitted a not-very coded signal over an open frequency like 433 MHz to a receiver inside your home. Do the same with the video stream. Now the receiver can be connected to the Internet, and can be significantly more secure because it’s behind your locked front door. The attack surface presented to the outside world by the doorbell itself is small, and limited to faking a doorbell press or showing you pictures you don’t want to see. Yawn.

But because the outside doorbell unit could be connected to a network, it was. Now the attack surface extends into your home’s network, and if you’re like most people, the WiFi router was your only real defense.

Now we love the IoT, in principle. There are tons of interesting applications that need the sort of bandwidth or remote availability that the Internet provides. We’re just not convinced yet that a doorbell, or a fridge for that matter, meet the criteria. But it does add a hundred bucks to the price tag, so that’s good, right? What do you think? When does the risk of IoT justify the reward?

Thanks [Dielectric] for the tip!

Surviving The FAA Regulations: Modelers Move Indoors

New FAA rules are making radio-controlled aircraft a rough hobby to enjoy here in the USA. Not only are the new drone enthusiasts curtailed, but the classic radio-controlled modelers are being affected as well. Everyone has to register, and for those living within 30 miles of Washington DC, flying of any sort has been effectively shut down. All’s not lost though. There is plenty of flying which can be done outside of the watchful eye of the FAA. All it takes is looking indoors.

Continue reading “Surviving The FAA Regulations: Modelers Move Indoors”

Add Seinfeld Bass Riffs To Any Doorway

It’s not the most involved hack we’ve seen this week, but it’s definitely creative and made us laugh. [Grant] and some friends were joking around about how cool it would be to have sitcom-style entry music fire off every time someone came in through a door, but in real life. You know, like everyone wants to have their own theme music? This is the same idea, but the Seinfeld equivalent. (Video embedded below the break.)

20160104_213816

A few simple parts later (Arduino, MP3 shield, magnetic door reed switch) and a tiny bit of code to randomize which bass riff plays, and it’s a done deal. Like we said, it’s not rocket science, but it’s a humorous addition to what looks like a well-stocked game room. (Is that a Joust console we see?)

For even greater comic effect, why not add Seinfeld bass riffs to your skateboard ramps?

Continue reading “Add Seinfeld Bass Riffs To Any Doorway”

Halloween Doorbell Prop In Rube-Goldberg Overdrive

[Conor] wired up his 3D-printed coffin doorbell to an array of RGB LEDs, a screaming speaker, and a spinning skull on a cordless screw driver to make a “quick” Halloween scare. Along the way, he included half of the Adafruit module catalog, a relay circuit board, and ESP8266 WiFi module, a Banana Pi, and more Arduinos of varying shapes and sizes than you could shake a stick at.

Our head spins, not unlike [Conor]’s screaming skull, just reading through this Rube Goldbergy arrangement. (We’re sure that’s half the fun for the builder!) Smoke ’em if ya got ’em!

Start with the RGB LEDs; rather than control them directly, [Conor] connected them to a WiFi-enabled strip controller. Great, now he can control the strip over the airwaves. But the control protocol was closed, so he spent a week learning Wireshark to sniff the network data, and then wrote a Bash script to send the relevant UDP packets to turn on the lights. But that was not fancy-schmancy enough, so [Conor] re-wrote the script in Go.

Yes, that’s right — a Go routine on a Banana Pi sends out custom UDP packets over WiFi to a WiFi-to-LED-driver bridge. To make lights blink. Wait until you see the skull.

spooky_eye_animThe plastic skull has Neopixels in each ping-pong ball eye, controlled by an Arduino Nano and battery taped to the skull’s head. The skull is cemented to a driver bit that’s chucked in a cordless drill. A relay board and another Arduino make it trigger for 10 seconds at a time when the doorbell rings. Finally (wait for it!) an Arduino connected to the doorbell gives the signal, and sets a wire high that all the other Arduini and the Banana Pi are connected to.

Gentle Hackaday reader, now is not the time for “I could do that with a 555 and some chewing gum.” Now is the time to revel in the sheer hackery of it all. Because Halloween’s over, and we’re sure that [Conor] has unplugged all of the breadboards and Arduini and put them to use in his next project. And now he knows a thing or two about sniffing UDP packets.

Continue reading “Halloween Doorbell Prop In Rube-Goldberg Overdrive”

Dragon Doors Round Off Hobbit Themed Restaurant

[Abhimanyu Kumar] is renovating a hotel in Nainital, near the India-Nepal border, and like any self-respecting Lord of the Rings fan, he wanted to give the restaurant a Hobbit theme. He built circular windows and to top it off a gorgeous round door complete with dragon hinges.

I asked him how well the doors work, as the 50kg (over 110lbs) weight of each of the doors must put a lot of strain on the hinges. [Abhimanyu] told me, “The door opens quite smoothly.While building the hinges even I was concerned about needing support as all other commercially available hinges we tried broke down or got bent.”

However, once the dragon hinge was installed it worked better that we expected and the door stays about 0.5″ over the ground at all times. The dragon hinges (made from 1/4-inch iron) integrate the hinge pins to the wings of the dragon, making it look like they are taking off when the doors open.

He has posted plenty of pictures of the build and the final product looks incredible.  The tail of the dragon is quite long and provides a lot of support for the entire door. Each hinge itself weighs about 30kg, so it should be strong enough to hold up a door for a long time without any sagging. Kudos to him for some serious engineering!

gears

Raspberry Pi Opens Doors

The Raspberry Pi is a cheap credit card sized computer that has opened the doors of embedded Linux to millions of people. But in this case, it’s literally opening a door. The Computer Club at Western Michigan University had to move to a different room which brought with it a new challenge. The door handle was more difficult to turn than the old one. Nothing that a NEMA 17 stepper couldn’t handle, however.

After printing a few gears and wiring up an Easy Driver board between the Raspi and stepper motor, they had the basics of a door opener in place. A 5v relay is used to keep the power off the stepper when not in use, and a limit switch is used to monitor the position of the door handle while a Hall Effect sensor tells when the door is open and shut.

Be sure to check out the project as all source, parts list and schematics are available in case you have a simliar door that needs amending.

Making A Door That Opens Both Ways

How many times have you walked into the wrong side of the door? How many times have you been momentarily confused as to whether or not you push or pull that obscure door handle which isn’t so obvious in its intended use?

What if you never had to worry about doors again? What if we could have an omni-directional door? [TVMiller] couldn’t find any examples of this, so he decided to build his own prototype. He calls it the Any Way Door.

The Any Way Door is just a 1:12 scale version, but as you can see in the following video, it works pretty well — and if anything would make for a very cool door that interior designers / architectures would love.

The question is, can it be done at full size effectively?

Continue reading “Making A Door That Opens Both Ways”