RFID Sticker On Bike Helmet Grants Garage Access

[Glen] might describe his project of opening his garage door by way of an RFID sticker on his bike helmet as simple, but some of the interfacing he needed to do was quite complex. He walks through the project from beginning to end, and there’s plenty to learn from.

When designing an RFID access control system, one has to decide what kind of reader and what kind of tags one wishes to use. They all function more or less the same way, but there are a lot of practical considerations to take into account such as cost, range, ease of use, and security options. After a lot of research, [Glen] decided on inexpensive sticker-style tags and a compatible reader supporting credentials with an ISO14443 UID that could be suitably mounted on a building’s exterior.

The actual opening of the door was the simple part, done by interfacing to a spare remote.

Breakout boards with ready-to-use code libraries exist for some RFID readers, but that wasn’t the case for the reader [Glen] had. He ended up rolling his own code to handle communication with the reader, with a Microchip PIC18F45K50 doing all the work of reading tags and performing access control. His code is on the project’s GitHub repository, and if you also find yourself needing to interface to a reader that uses the Wiegand protocol, you might want to give it a look.

Controlling the actual garage door was the easy part. All that took was soldering two wires across the switch contacts of a spare garage door opener remote, and using a relay to close the contacts. Simple and effective. You can see it in action in the short video, embedded below the break.

Overhead door access control might be a simple concept, but it comes in all shapes and sizes when enterprising hackers start looking for solutions. We’ve seen garage doors given the DIY IoT treatment, and even seen access controlled by a car’s headlamp flashes, which actually turned out to be more secure than it sounds.

Continue reading “RFID Sticker On Bike Helmet Grants Garage Access”

Open Sesame, From A Galaxy Far, Far Away.

[TVMiller]’s description of his project is epic enough to deserve a literal copy-paste (something our readers often praise us about). In his own words,  “Having discovered several spare Midichlorians in my liquor cabinet, I trained and applied them to opening a large cumbersome gate. The FORCE motion travels through my inner what-nots and is translated by the Pebble Classic accelerometer toggling a command sent to the (Particle) Cloud (City) which returns to the Particle Photon triggering a TIP120 to fire a button on an existing RF transceiver. May the ridiculous hand gestures be with you, always.” Thus was born the Gate Jedi , and you’ll need exactly 47 Midichlorians, and some other trivial parts, to build one.

The Pebble watch hooks up to his android smart phone. A Pebble (android) app sends the accelerometer data to the Particle (previously called Spark) cloud service. From there, the data is pushed to the Photon IoT board which runs a few lines of code. Output from the Photon turns on a TIP120 power transistor, which in turn triggers the existing RF trans receiver that opens the Gate.

This looks way cooler than the Light Sabre hacks. Check out the video of him summoning the Force. And if you’d like to do more, try integrating gesture controls with this Pebble Watch hack that turns it into a home automation controller.

Continue reading “Open Sesame, From A Galaxy Far, Far Away.”

gears

Raspberry Pi Opens Doors

The Raspberry Pi is a cheap credit card sized computer that has opened the doors of embedded Linux to millions of people. But in this case, it’s literally opening a door. The Computer Club at Western Michigan University had to move to a different room which brought with it a new challenge. The door handle was more difficult to turn than the old one. Nothing that a NEMA 17 stepper couldn’t handle, however.

After printing a few gears and wiring up an Easy Driver board between the Raspi and stepper motor, they had the basics of a door opener in place. A 5v relay is used to keep the power off the stepper when not in use, and a limit switch is used to monitor the position of the door handle while a Hall Effect sensor tells when the door is open and shut.

Be sure to check out the project as all source, parts list and schematics are available in case you have a simliar door that needs amending.