High-Speed Drones Use AI To Spoil The Fun

Some people look forward to the day when robots have taken over all our jobs and given us an economy where we can while our days away on leisure activities. But if your idea of play is drone racing, you may be out of luck if this AI pilot for high-speed racing drones has anything to say about it.

NASA’s Jet Propulsion Lab has been working for the past two years to develop the algorithms needed to let high-performance UAVs navigate typical drone racing obstacles, and from the look of the tests in the video below, they’ve made a lot of progress. The system is vision based, with the AI drones equipped with wide-field cameras looking both forward and down. The indoor test course has seemingly random floor tiles scattered around, which we guess provide some kind of waypoints for the drones. A previous video details a little about the architecture, and it seems the drones are doing the computer vision on-board, which we find pretty impressive.

Despite the program being bankrolled by Google, we’re sure no evil will come of this, and that we’ll be in no danger of being chased down by swarms of high-speed flying killbots anytime soon. For now we can take solace in the fact that JPL’s algorithms still can’t beat an elite human pilot like [Ken Loo], who bested the bots overall. But alarmingly, the human did no better than the bots on his first lap, which suggests that once the AI gets a little creativity and intuition like that needed to best a Go champion, [Ken] might need to find another line of work.

Continue reading “High-Speed Drones Use AI To Spoil The Fun”

Russian Drone Can Lift 142 Phantom 3 Drones

Russia has long been known for making large machines. They hold the current record for the largest helicopter ever made – the MiL V12. Same goes for the world’s largest airplane, the Antonov An-225. Largest submarine? Yep, they made that too – the Typhoon class. It would appear they’ve thrown their hat in the drone business as well.

While the SKYF drone is made by a private Russian company, it is one of the largest drones we’ve ever seen. Able to lift 400 pounds (a Phantom 3 weighs 2.8 pounds) and can fly for eight hours, the SKYF drone is a nice piece of aeronautical engineering. Quad-copter style drones provide lift by brute force, and are typically plagued with low lift capacities and short flight times. The SKYF triumphs over these limitations by using gasoline powered engines for lift and electric motors for navigation.

It’s still in the prototype stage and being advertised for use in natural disasters and the agriculture industry. Check out the video in the link above to see the SKYF in action.

What’s the largest drone you’ve seen?

Thanks to [Itay] for the tip!

Your Drone Is Cool, But It’s No Jet Fighter

There are some communities with whom our happy band of hardware hackers share a lot in common, but with whom we don’t often associate. The more workshop-orientated end of the car modification or railway modeler scenes, for instance, or the model aircraft fraternity. Many of these communities exist more for the activity than for the making, some of them dabble with building kits, but among them are a hard core of people who create amazing projects from scratch.

Take [Igor Negoda], for example. Not content with building just any model aircraft, he’s built his own from scratch, to his own design. And if designing for yourself what amounts to a scaled-down jet fighter wasn’t enough, he’s also built his own jet engine to power it. His videos are all in Russian so use YouTube’s subtitle feature if you’re not a Russian speaker, but they’re so good that if you couldn’t access the English translation you’d want to learn the language just to hear his commentary.

The video below the break shows us first a fast-taxi test using a ducted fan, then a full test flight with the jet engine. There is an explanation of the fuel system and the flight control systems, before an impressive flight from what appears to be a former Cold War-era runway. There are a few funny moments such as transporting a large model jet aircraft in a small hatchback car, but the quality of the work in a garage workshop shines through. Suddenly a multirotor doesn’t cut it any more, we want a jet aircraft like [Igor]’s!

Continue reading “Your Drone Is Cool, But It’s No Jet Fighter”

Drone License Plates: An Idea That Won’t Stave Off The Inevitable

As more and more drones hit the skies, we are beginning to encounter a modest number of problems that promise to balloon if ignored. 825,000 drones above a quarter-kilo in weight were sold in the U.S. in 2016. The question has become, how do we control all these drones?

Continue reading “Drone License Plates: An Idea That Won’t Stave Off The Inevitable”

This Drone Can Fly, Swim, And Explode….. Wait, What?

You’ve probably heard of micro-drones, perhaps even nano-drones, but there research institutions that shrink these machines down to the size of insects. Leading from the [Wiss Institute For Biologically Inspired Engineering] at Harvard University, a team of researchers have developed a miniscule robot that — after a quick dip — literally explodes out of the water.

To assist with the take off, RoboBee has four buoyant outriggers to keep it near the water’s surface as it uses electrolysis to brew oxyhydrogen in its gas chamber. Once enough of the combustible gas has accumulated — pushing the robot’s wings out of the water in the process– a sparker ignites the fuel, thrusting it into the air. As yet, the drone has difficulty remaining in the air after this aquatic takeoff, but we’re excited to see that change soon.

Looking like a cross between a water strider and a bee, the team suggest this latest version of the RoboBee series  — a previous iteration used electrostatic adhesion to stick to walls — could be used for search and rescue, environmental monitoring, and biological studies. The capacity to transition from aerial surveyor, to underwater explorer and back again would be incredibly useful, but in such a small package, it is troublesome at best. Hence the explosions.

Continue reading “This Drone Can Fly, Swim, And Explode….. Wait, What?”

SpiderMAV drone perching from the ceiling

SpiderMAV Drone Shoots Webs To Perch And Stabilize

Introducing your friendly neighborhood SpiderMAV, a micro aerial vehicle that shoots webbing to enable it to hang from ceilings and stabilize itself horizontally using low power. It’s inspired by the Darwin’s bark spider that spins a circular web with anchor lines up to 25 meters (82 feet) long.

SpiderMAV perching and stabilizing modules

For the DJI Matrice 100 drone to hang from a ceiling, a compressed gas cylinder fires a magnet with a trailing polystyrene line up to a steel beam. The line can then be reeled in to the desired length. For horizontal stabilization, line-trailing magnets are fired horizontally instead and then reeled in to tension the lines.

To test the effectiveness of the system, a cross wind was produced using a fan. With the DJI’s attitude-hold mode, maximum X, Y and Z deviations were 136, 386 and 106 mm respectively. With the stabilization, however, the deviations were reduced to 47, 80 and 74 mm. The power requirements were also reduced to essentially nil. Watch it in action in the videos below.

SpiderMAV is the brainchild of Imperial College London’s Aerial Robotics Laboratory, led by [Mirko Kovac], and is still experimental. For example, a magnet release mechanism has yet to be built in. Perhaps a sharp tug by the reeling mechanism, or a sudden thrust by the drone would release the magnets. Or the permanent magnets could be replaced with electromagnets, provided the required current doesn’t offset the efficiency gains. What solutions can you come up with? Let us know in the comments.

Continue reading “SpiderMAV Drone Shoots Webs To Perch And Stabilize”

Where Can You Fly? Worldwide Drone Laws Mapped

If you are a flier of a multirotor, or drone, you should be painfully aware of the regulations surrounding them wherever you live, as well as the misinformation and sometime bizarre levels of hysteria from uninformed people over their use.

Should you travel with your drone, you will also probably be resigned to being interrogated by airport staff high on The War On Terror security theatre, and you’ll probably not find it surprising that they have little idea of the laws and regulations over which they have pulled you aside. It’s a confusing situation, and it’s one that [Anil Polat] has addressed by collating information about drone laws worldwide, and presenting his results on a Google map.

To do this must have been a huge undertaking, particularly since he got in touch with the appropriate authorities to access the information from the horse’s mouth. Looking at the map, we can almost view the green, yellow, and red pins showing different levels of restriction on flight as a fascinating indication of differing levels of security paranoia worldwide. If your territory has an orange or red pin, our commiseration.

This is a useful resource for anyone with an interest in multirotor flying, and he has also made it available as an app. However, it is always safest to check with the authorities concerned before flying in another territory, in case any laws have changed.

Here at Hackaday we’ve held an interest in the interface between multirotor fliers, governments, and the general public for a while now. In 2015 we took a look at FAA regulations for example, and last year we examined the inaccuracies in British air incident reports.

Via Adafruit.