Remembering Virginia Norwood, Mother Of NASA’s Landsat Success

Virginia T. Norwood passed away earlier this year at the age of 96, and NASA’s farewell to this influential pioneer is a worth a read. Virginia was a brilliant physicist and engineer, and among her other accomplishments, we have her to thank for the ongoing success of the Landsat program, which continues to this day.

The goal of the program was to image land from space for the purpose of resource management. Landsat 1 launched with a Multispectral Scanner System (MSS) that Norwood designed to fulfill this task. Multispectral imaging was being done from aircraft at the time, but capturing this data from space — not to mention deciding which wavelengths to capture — and getting it back down to Earth required solving a whole lot of new and difficult problems.

Continue reading “Remembering Virginia Norwood, Mother Of NASA’s Landsat Success”

Hackaday Links Column Banner

Hackaday Links: May 7, 2023

More fallout for SpaceX this week after their Starship launch attempt, but of the legal kind rather than concrete and rebar. A handful of environmental groups filed the suit, alleging that the launch generated “intense heat, noise, and light that adversely affects surrounding habitat areas and communities, which included designated critical habitat for federally protected species as well as National Wildlife Refuge and State Park lands,” in addition to “scatter[ing] debris and ash over a large area.”

Specifics of this energetic launch aside, we always wondered about the choice of Boca Chica for a launch facility. Yes, it has all the obvious advantages, like a large body of water directly to the east and being at a relatively low latitude. But the whole area is a wildlife sanctuary, and from what we understand there are still people living pretty close to the launch facility. Then again, you could pretty much say the same thing about the Cape Canaveral and Cape Kennedy complex, which probably couldn’t be built today. Amazing how a Space Race will grease the wheels of progress.

Continue reading “Hackaday Links: May 7, 2023”

3D Scanning A Room With A Steam Deck And A Kinect

It may not be obvious, but Valve’s Steam Deck is capable of being more than just a games console. Demonstrating this is [Parker Reed]’s experiment in 3D scanning his kitchen with a Kinect and Steam Deck combo, and viewing the resulting mesh on the Steam Deck.

The two pieces of hardware end up needing a lot of adapters and cables.

[Parker] runs the RTAB-Map software package on his Steam Deck, which captures a point cloud and color images while he pans the Kinect around. After that, the Kinect’s job is done and he can convert the data to a mesh textured with the color images. RTAB-Map is typically used in robotic applications, but we’ve seen it power completely self-contained DIY 3D scanners.

While logically straightforward, the process does require some finessing and fiddling to get it up and running. Reliability is a bit iffy thanks to the mess of cables and adapters required to get everything hooked up, but it does work. [Parker] shows off the whole touchy process, but you can skip a little past the five minute mark if you just want to see the scanning in action.

The Steam Deck has actual computer chops beneath its games console presentation, and we’ve seen a Steam Deck appear as a USB printer that saves received print jobs as PDFs, and one has even made an appearance in radio signal direction finding.

Continue reading “3D Scanning A Room With A Steam Deck And A Kinect”

The Hello World Of GPT?

Someone wants to learn about Arduino programming. Do you suggest they blink an LED first? Or should they go straight for a 3D laser scanner with galvos, a time-of-flight sensor, and multiple networking options? Most of us need to start with the blinking light and move forward from there. So what if you want to learn about the latest wave of GPT — generative pre-trained transformer — programs? Do you start with a language model that looks at thousands of possible tokens in large contexts? Or should you start with something simple? We think you should start simple, and [Andrej Karpathy] agrees. He has a workbook that makes a tiny GPT that can predict the next bit in a sequence. It isn’t any more practical than a blinking LED, but it is a manageable place to start.

The simple example starts with a vocabulary of two. In other words, characters are 1 or 0. It also uses a context size of 3, so it will look at 3 bits and use that to infer the 4th bit. To further simplify things, the examples assume you will always get a fixed-size sequence of tokens, in this case, eight tokens. Then it builds a little from there.

Continue reading “The Hello World Of GPT?”

Fast Scanning Bed Leveling

The bane of 3D printing is what people commonly call bed leveling. The name is a bit of a misnomer since you aren’t actually getting the bed level but making the bed and the print head parallel. Many modern printers probe the bed at different points using their own nozzle, a contact probe, or a non-contact probe and develop a model of where the bed is at various points. It then moves the head up and down to maintain a constant distance between the head and the bed, so you don’t have to fix any irregularities. [YGK3D] shows off the Beacon surface scanner, which is technically a non-contact probe, to do this, but it is very different from the normal inductive or capacitive probes, as you can see in the video below. Unfortunately, we didn’t get to see it print because [YGK3D] mounted it too low to get the nozzle down on the bed. However, it did scan the bed, and you can learn a lot about how the device works in the video. If you want to see one actually printing, watch the second, very purple video from [Dre Duvenage].

Generally, the issues with probes are making them repeatable, able to sense the bed, and the speed of probing all the points on the bed. If your bed is relatively flat, you might get away with probing only 3 points so you can understand how the bed is tilted. That won’t help you if your bed has bumps and valleys or even just twists in it. So most people will probe a grid of points.

Continue reading “Fast Scanning Bed Leveling”

Hackaday Links Column Banner

Hackaday Links: April 2, 2023

It may be hard to believe, but it’s time for the Hackaday Prize again! The 2023 Hackaday Prize was announced last weekend at Hackaday Berlin, and entries are already pouring in. The first-round challenge is all about “Re-engineering Education,” which means you’ve got to come up with a project idea that helps push back the veil of ignorance somehow. Perhaps you’ve got a novel teaching tool in mind, or a way to help students learn remotely. Or maybe your project is aimed at getting students involved and engaged. Whatever it is — and whatever the subject matter; it doesn’t just have to be hacking-adjacent — get an entry together, build a team, and get to work. The first round closes on April 25, so get to it!

Continue reading “Hackaday Links: April 2, 2023”

This Week In Security: Macstealer, 3CX Carnage, And Github’s Lost Key

There’s a naming overload here, as two bits of security news this week are using the “MacStealer” moniker. We’re first going to talk about the WiFi vulnerability, also known as Framing Frames (pdf). The WPA encryption schemes introduced pairwise encryption, ensuring that not even other authenticated users can sniff each others’ traffic. At least that’s the idea, but this attack finds a couple techniques to bypass that protection.

A bit more background, there are a couple ways that packets can be delayed at the sender side. One of those is the power-save message, that signals the access point that the given client is going into a low power state. “Hold my calls, I’m going to sleep.” That message is a single bit in a frame header. And notably, that bit isn’t covered by WPA encryption or verification. An attacker can send a message, spoof a victim’s MAC address, and the access point marks that client as being in power-save mode.

This observation leads to a question: What happens when the encryption details change between the packet joining the queue, and actually transmitting? Turns out, the specifications on WiFi encryption don’t spell it out, and some implementations do the last thing you’d want, like sending the packets in the clear. Whoops. This behavior was the case in the Linux kernel through version 5.5.0, but starting with 5.6.0, the buffered packets were simply dropped when the encryption key was unavailable. Continue reading “This Week In Security: Macstealer, 3CX Carnage, And Github’s Lost Key”