Never Stare Down A Robot

There are a few things historically difficult to make a robot do. Stairs, of course, are the obvious problem. But realistic blinking behavior is harder than you might think. At first, it might seem frivolous and simple to have a robot blink, but according to Italian scientists, it is both more important and more difficult than you probably think.

Blinking is a nonverbal cue when humans communicate. The post quotes a Finnish researcher:

While it is often assumed that blinking is just a reflexive physiological function associated with protective functions and ocular lubrication, it also serves an important role in reciprocal interaction.

Continue reading “Never Stare Down A Robot”

ESA Juice’s RIME Antenna Breaks Free After Some Jiggling And Percussive Action

After ESA’s Jupiter-bound space probe Juice (Jupiter Icy Moons Explorer) launched on April 14th of this year, it initially looked as if it had squeezed out a refreshingly uneventful deployment, until it attempted to unfurl its solar panels and antennae. One of these antennae, for the RIME (Radar for Icy Moons Exploration) instrument that uses ice-penetrating radar to get a subsurface look at Jupiter’s moons, ended up being rather stuck. Fortunately, on May 12th it was reported that ESA engineers managed to shock the sticky pin loose.

Release of the jammed antenna coinciding with the actuation of the NEA ('NEA 6 Release'). The antenna wobbles about before settling in a locked position. (Credit: ESA)
Release of the jammed antenna coinciding with the actuation of the NEA (‘NEA 6 Release’). The antenna wobbles about before settling in a locked position. (Credit: ESA)

We previously covered the discovery of Juice’s  RIME antenna troubles, with one of the retaining pins that hold the antenna in place in its furled position stubbornly refusing to shift the few millimeters that would have allowed for full deployment. Despite the high-tech nature of the Juice spacecraft, the optimal solution to make the pin move was simply to try and shake it loose.

Attempts were initially made using the spacecraft’s thrusters to shake the whole vehicle, as well as by warming it in sunlight. Each of these actions seemed to help a little bit, but the breakthrough came when a non-explosive actuator (NEA) was actuated in the jammed bracket. This almost fully fixed the problem, leading the team in charge to decide to fire another NEA, which finally allowed the pin to fully shift and the antenna to fully deploy and lock into place.

Assuming no further issues occur during Juice’s long trip through the Solar System, Juice is expected to arrive at Jupiter after four gravity assists in July of 2031. There it will perform multiple science missions until a planned deorbit on Ganymede by late 2035.

Hackaday Prize 2023: The NEOKlacker Pocket Computer

Science fiction always promised us pocket computers. These days, we’re spoiled for choice. [Spider Jerusalem] eschewed a simple smartphone or tablet, though, instead building a custom pocket computer of their own design. 

Like so many other DIY cyberdecks and handheld computers, this one relies on a Raspberry Pi. In this case, it’s built using a Pi 4 with 8GB of RAM, which offers a snappy experience that wasn’t available on the earliest boards. [Spider] paired it with a nifty 720×720 LCD screen and a full QWERTY button pad, wrapped up in a tidy 3D-printed case. Like any good pocket computer, it’s well-connected, thanks to a 4G LTE cellular data connection.

It might seem to be a build without a purpose in this era, but that’s not necessarily the case. When it comes to running barebones Linux utilities at a real command line, a Raspberry Pi offers some utility that the average smartphone doesn’t have out of the box. It’s a useful tool if you need to interface with a server on the go or do some low-level network diagnostics without carrying a whole laptop around. Video after the break.

Continue reading “Hackaday Prize 2023: The NEOKlacker Pocket Computer”

Home Heating With Bitcoin Miners Is Now A Real Thing

If you were reading this post a month ago, you could have been forgiven for thinking it was an April Fools post. But we assure you, this is no joke. A company called HeatBit has recently opened preorders for their second generation of Bitcoin miner that doubles as a space heater.

The logic goes something like this: if you’re going to be using an electric space heater anyway, which essentially generates heat by wasting a bunch of energy with a resistive element, why not replace that element with a Bitcoin miner instead? Or at least, some of the element. The specs listed for the HeatBit Mini note that the miner itself only consumes 300 watts, which is only responsible for a fraction of the device’s total heat output. Most of the thermal work is actually done by a traditional 1000 watt heater built inside the 46 cm (18 inch) tall cylindrical device.

Continue reading “Home Heating With Bitcoin Miners Is Now A Real Thing”

Remembering Virginia Norwood, Mother Of NASA’s Landsat Success

Virginia T. Norwood passed away earlier this year at the age of 96, and NASA’s farewell to this influential pioneer is a worth a read. Virginia was a brilliant physicist and engineer, and among her other accomplishments, we have her to thank for the ongoing success of the Landsat program, which continues to this day.

The goal of the program was to image land from space for the purpose of resource management. Landsat 1 launched with a Multispectral Scanner System (MSS) that Norwood designed to fulfill this task. Multispectral imaging was being done from aircraft at the time, but capturing this data from space — not to mention deciding which wavelengths to capture — and getting it back down to Earth required solving a whole lot of new and difficult problems.

Continue reading “Remembering Virginia Norwood, Mother Of NASA’s Landsat Success”

Tools Of The Trade: Dirt Cheap Or Too Dirty?

We’ve recently seen a couple reviews of a particularly cheap oscilloscope that, among other things, doesn’t meet its advertised specs. Actually, it’s not even close. It claims to be a 100 MHz scope, and it’s got around 30 MHz of bandwidth instead. If you bought it for higher frequency work, you’d have every right to be angry. But it’s also cheap enough that, if you were on a very tight budget, and you knew its limitations beforehand, you might be tempted to buy it anyway. Or so goes one rationale.

In principle, I’m of the “buy cheap, buy twice” mindset. Some tools, especially ones that you’re liable to use a lot, make it worth your while to save up for the good stuff. (And for myself, I would absolutely put an oscilloscope in that category.) The chances that you’ll outgrow or outlive the cheaper tool and end up buying the better one eventually makes the money spent on the cheaper tool simply wasted.

But that’s not always the case either, and that’s where you have to know yourself. If you’re only going to use it a couple times, and it’s not super critical, maybe it’s fine to get the cheap stuff. Or if you know you’re going to break it in the process of learning anyway, maybe it’s a shame to put the gold-plated version into your noob hands. Or maybe you simply don’t know if an oscilloscope is for you. It’s possible!

And you can mix and match. I just recently bought tools for changing our car’s tires. It included a dirt-cheap pneumatic jack and an expensive torque wrench. My logic? The jack is relatively easy to make functional, and the specs are so wildly in excess of what I need that even if it’s all lies, it’ll probably suffice. The torque wrench, on the other hand, is a bit of a precision instrument, and it’s pretty important that the bolts are socked up tight enough. I don’t want the wheels rolling off as I drive down the road.

Point is, I can see both sides of the argument. And in the specific case of the ’scope, the cheapo one can also be battery powered, which gives it a bit of a niche functionality when probing live-ground circuits. Still, if you’re marginally ’scope-curious, I’d say save up your pennies for something at least mid-market. (Rigol? Used Agilent or Tek?)

But isn’t it cool that we have so many choices? Where do you buy cheap? Where won’t you?

Tiny Bitcoin Miner Plays The Lottery

Usually when we think of Bitcoin miners, we imagine huge facilities of server racks doing nothing but essentially wasting energy, all for the chance that one of those computers amongst the rows will stumble upon the correct set of numbers to get rewarded with imaginary money. The idea being that the more computers, the more chances to win. But just buying one lottery ticket is the only thing technically required to win, at least in theory. And [Data Slayer] is putting this theory to the test with this Bitcoin miner built around a single Raspberry Pi.

This tiny Raspberry Pi Zero does get a little bit of support from an Ant Miner, a USB peripheral which is optimized to run the SHA256 hashing algorithm and solve the complex mathematical operations needed to “win” the round of Bitcoin mining. Typically a large number of these would be arrayed together to provide more chances at winning (or “earning”, to use the term generously) Bitcoin but there’s no reason other than extreme statistical improbability that a single one can’t work on its own. The only other thing needed to get this setup working is to give the Pi all of the configuration information it needs such as wallet information and pool information.

This type of miner isn’t novel by any means, and in fact it’s a style of mining cryptocurrency called “lottery mining” where contributing to a pool is omitted in favor of attempting to solve the entire block by pure random chance alone in the hopes that if it’s solved, the entire reward will be claimed by that device alone. In the case of this device, the current hash rate calculated when it was contributing to a pool means that when lottery mining, it has about a one-in-two-billion chance of winning. That’s essentially zero, which is basically the same chance of winning a lottery that pays out actual usable currency.

Continue reading “Tiny Bitcoin Miner Plays The Lottery”