Your Data In The Cloud

I try not to go off on security rants in the newsletter, but this week I’m unable to hold back. An apparent breach of a data aggregator has resulted in a monster dataset of US, UK, and Canadian citizens names, addresses, and social security numbers. As a number of reports have pointed out, the three billion records in the breach likely contain duplicate individuals, because they include all the addresses where you’ve lived, and there have only been on the order of 450 million US social security numbers issued anyway.

But here’s the deal. Each of these data aggregators, and each of the other companies that keep tons of data on you, are ticking time bombs. Maybe not every one of them gets breached, but there’s certainly enough incentive for the bad guys to try to do so. (They are looking to sell the NPD dataset mentioned above for $3.5 million.)

My gut feeling is that eventually all of the information on everyone will be released. Maybe then it will cease to be interesting to new crops of crooks, because there’s nothing new to learn.

On the other hand, the sheer quantity of identity thefts that this, and future breaches, will unleash on us all is mind-boggling. In the case of legitimate data aggregators like this one, requesting to have had your data out of their dataset appears to have been a viable defense. But for every one legit operator, there are others that simply track you. When they get hacked, you lose.

This breach is likely going to end in a large lawsuit against the company in question, but it almost certainly won’t be big enough to cover the damage to everyone in the affected countries. Is it time that companies that hold large datasets will have to realize that the data is a liability as well as an asset?

For years, the first Air Force One sat neglected and forgotten in an open field at Arizona’s Marana Regional Airport. (Credit: Dynamic Aviation)

The First Air Force One And How It Was Nearly Lost Forever

Although the designation ‘Air Force One’ is now commonly known to refer to the airplane used by the President of the United States, it wasn’t until Eisenhower that the US President would make significant use of a dedicated airplane. He would have a Lockheed VC-121A kitted out to act as his office as commander-in-chief. Called the Columbine II after the Colorado columbine flower, it served a crucial role during the Korean War and would result the coining of the ‘Air Force One’ designation following a near-disaster in 1954.

This involved a mix-up between Eastern Air Lines 8610 and Air Force 8610 (the VC-121A). After the Columbine II was replaced with a VC-121E model (Columbine III), the Columbine II was mistakenly sold to a private owner, and got pretty close to being scrapped.

In 2016, the plane made a “somewhat scary and extremely precarious” 2,000-plus-mile journey to Bridgewater, Virginia, to undergo a complete restoration. (Credit: Dynamic Aviation)
In 2016, the plane made a “somewhat scary and extremely precarious” 2,000-plus-mile journey to Bridgewater, Virginia, to undergo a complete restoration. (Credit: Dynamic Aviation)

Although nobody is really sure how this mistake happened, it resulted in the private owner stripping the airplane for parts to keep other Lockheed C-121s and compatible airplanes flying. Shortly before scrapping the airplane, he received a call from the Smithsonian Institution, informing him that this particular airplane was Eisenhower’s first presidential airplane and the first ever Air Force One. This led to him instead fixing up the airplane and trying to sell it off. Ultimately the CEO of the airplane maintenance company Dynamic Aviation, [Karl D. Stoltzfus] bought the partially restored airplane after it had spent another few years baking in the unrelenting sun.

Although in a sorry state at this point, [Stoltzfus] put a team led by mechanic [Brian Miklos] to work who got the airplane in a flying condition by 2016 after a year of work, so that they could fly the airplane over to Dynamic Aviation facilities for a complete restoration. At this point the ‘nuts and bolts’ restoration is mostly complete after a lot of improvisation and manufacturing of parts for the 80 year old airplane, with restoration of the Eisenhower-era interior and exterior now in progress. This should take another few years and another $12 million or so, but would result in a fully restored and flight-worthy Columbine II, exactly as it would have looked in 1953, plus a few modern-day safety upgrades.

Although [Stoltzfus] recently passed away unexpectedly before being able to see the final result, his legacy will live on in the restored airplane, which will after so many years be able to meet up again with the Columbine III, which is on display at the National Museum of the USAF.

Laser Art Inspired By The Ford Motor Company

Have you ever heard of Fordite? It was a man-made agate-like stone that originated from the Ford auto factories in the 1920s. Multiple layers of paint would build up as cars were painted different colors, and when it was thick enough, workers would cut it, polish it, and use it in jewelry. [SheltonMaker] uses a similar technique to create artwork using a laser engraver and shares how it works by showing off a replica of [Van Gogh’s] “Starry Night.”

A piece of Fordite on a pendant

The technique does have some random variation, so the result isn’t a perfect copy but, hey, it is art, after all. While true Fordite has random color layers, this technique uses specific colors layered from the lightest to the darkest. Each layer of paint is applied to a canvas. Only after all the layers are in place does the canvas go under the laser.

The first few layers of paint are white and serve as a backer. Each subsequent layer is darker until the final black layer. The idea is that the laser will cut at different depths depending on the desired lightness. A program called ImagR prepared the image as a negative image. Adjustments to the brightness, contrast, and gamma will impact the final result.

Of course, getting the exact power settings is tricky. The best result was to start at a relatively low power and then make more passes at an even lower power until things looked right. In between, compressed air cleared the print, although you have to be careful not to move the piece, of course.

There are pictures of each pass, and the final product looks great. If art’s not your thing, you can also do chip logos. While the laser used in this project is a 40-watt unit, we’ve noted before that wattage isn’t everything. You could do this—probably slower—with a lower-powered engraver.

Fordite image By [Rhonda]  CC BY-SA 2.0.

A USA Feature For A Europe-Market Sony Receiver

A feature of many modern network-connected entertainment devices is that they will play streamed music while on standby mode. This so-called “network standby”is very useful if you fancy some gentle music but don’t want the Christmas lights or the TV. It was a feature [Caramelfur] missed on their Sony AV receiver, something especially annoying because it’s present on the US-market equivalent of their European model. Some gentle hackery ensued, and now the rece3iver follows its American cousin.

A first examination of the firmware found the two downloads to be identical, so whatever differences had to be in some form of configuration. Investigating what it exposed to the network led to a web server with device configuration parameters. Some probing behind the scenes and a bit of lucky guesswork identified the endpoint to turn on network standby, and there it was, the same as the US market model. Should you need it, the tooling is in a GitHub repository.

This isn’t the first time we’ve seen identical hardware being shipped with different firmwares in Europe from that in the USA, perhaps our most egregious example was a Motorola phone with a much earlier Android version for Europeans. We don’t understand why manufacturers do it, in particular with such an innocuous feature as network standby. If you have a Sony receiver you can now fix it, but you shouldn’t have to.

RJ45, Devcore, CC0.

Canadarm2 captures Cygnus OA-5 S.S. Alan Poindexter in late 2016 (Credit: NASA)

Canadarm2 Scores Milestone With Catching Its 50th Spacecraft

Recently Canada’s Canadarm2 caught its 50th spacecraft in the form of a Northrop Grumman Cygnus cargo vessel since 2009. Although perhaps not the most prominent part of the International Space Station (ISS), the Canadarm2 performs a range of very essential functions on the outside of the ISS, such as moving equipment around and supporting astronauts during EVAs.

Power and Data Grapple Fixture on the ISS (Credit: NASA)
Power and Data Grapple Fixture on the ISS (Credit: NASA)

Officially called the Space Station Remote Manipulator System (SSRMS), it is part of the three-part Mobile Servicing System (MSS) that allows for the Canadarm2 and the Dextre unit to scoot around the non-Russian part of the ISS, attach to Power Data Grapple Fixtures (PDGFs) on the ISS and manipulate anything that has a compatible Grapple Fixture on it.

Originally the MSS was not designed to catch spacecraft when it was installed in 2001 by Space Shuttle Endeavour during STS-100, but with the US moving away from the Space Shuttle to a range of unmanned supply craft which aren’t all capable of autonomous docking, this became a necessity, with the Japanese HTV (with grapple fixture) becoming the first craft to be caught this way in 2009. Since the Canadarm2 was originally designed to manipulate ISS modules this wasn’t such a major shift, and the MSS is soon planned to also started building new space stations when the first Axiom Orbital Segment is launched by 2026. This would become the Axiom Station.

With the Axiom Station planned to have its own Canadarm-like system, this will likely mean that Canadarm2 and the rest of the MSS will be decommissioned with the rest of the ISS by 2031.

Top image: Canadarm2 captures Cygnus OA-5 S.S. Alan Poindexter in late 2016 (Credit: NASA)

Roll Your Own Presence Sensor

[Mellow_Labs] wanted an Everything Presence Lite but found it was always out of stock. Therefore, he decided to create his own. The kit uses a millimeter wave sensor as a super-sensitive motion tracker for up to three people. It can even read your heart rate remotely. You can see a video of the project below.

There are a few differences from the original kit. Both use the C4001 24 GHz human presence detection sensor. However, the homebrew version also includes a BME680 environmental sensor.

Continue reading “Roll Your Own Presence Sensor”

Fighting The Scourge Of “Screwdriver Mange”

We’ve all got our favorite hand tools, and while the selection criteria are usually pretty subjective, it usually boils down to a combination of looks and feel. In our opinion, the king of both these categories when it comes to screwdrivers is those clear, hard acetate plastic handles, which are a joy to use — at least until the plastic starts to degrade and exude a characteristically funky aroma.

But perhaps we can change that if these experiments on screwdriver “mange” hold up. That’s [357magdad]’s unappealing but accurate description of the chemical changes that eventually occur in the strong, hard, crystal-clear handles of your favorite screwdrivers. The polymer used for these handles is cellulose acetate butyrate, or CAB, which is mostly the same cellulose acetate that replaced the more explode-y cellulose nitrate in things like pool balls and movie film, except with some of the acetate groups replaced with a little butyric acid. The polymer is fine at first, but add a little UV light and over time the outer layer of CAB decomposes into a white flaky cellulose residue while the butyric acid volatilizes, creating the characteristic odor of vomitus. Lovely.

In the video below, [357magdad] takes a look at different concoctions that all allegedly cure the mange. TL, DW; it was a dunk in household ammonia that performed the best, well ahead of other common agents like vinegar and bleach. The ammonia — or more precisely, ammonium hydroxide — works very quickly on the cellulose residue, dissolving it readily and leaving the handle mange-free and looking nearly new after some light scrubbing. None of the other agents came close, although acetone did manage to clear up the mange a bit, at the cost of softening the underlying CAB in a process that’s probably similar to acetone smoothing ABS prints.

As for the funky smell, well, the results were less encouraging. Nothing really got rid of the pukey smell, even a roll in baking soda. We suspect there won’t be much for that, since humans can detect it down to 10 parts per million. Consider it the price to pay for a nice-looking screwdriver that feels so good in your hand. Continue reading “Fighting The Scourge Of “Screwdriver Mange””