Step climbing rocker-bogie robot

Simple Step-Climbing Robot Climbs Like It’s On Mars

[Navin Khambhala] is a master at making simple what most would expect to be a complex build. Now he’s done it again with a remote controlled robot that can easily climb steps and role over rough terrain. The parts count is small and many of them are commonly available.

The suspension that makes it all possible is the rocker-bogie. It’s the same suspension we’ve all seen used by the various rovers ambling around on Mars. The whole frame is made of PVC pipes with some connecting metal bars, and each wheel has its own twelve-volt DC motor. Motor control is done simply with a module that combines the 2.4 GHz receiver with motor controllers. When you watch the video below, note where only one hole is drilled through the PVC for making connections instead of two holes. Where there’s only one hole, the two sections of PVC are free to rotate independently of each other. Turning the robot is done by rotating the wheels on one side in one direction and the wheels on the other side in the opposite direction. This is called a differential drive or tank drive, and we’ve highlighted it before for use in making hamster-drive type BB-8 droids.

Continue reading “Simple Step-Climbing Robot Climbs Like It’s On Mars”

Hackaday Prize Best Product Finalist: Reconfigurable Robots

Reconfigurable robots have been around for ages. One of the first and most popular reconfigurable robots came out of the MIT Media Lab, and last year, DTTO, a modular snake-like robot, won the 2016 Hackaday Prize. There’s a lot that can be learned from a robot that can turn from a walker to a swimmer to something that clambers over rough terrain, and [Salvador]’s EMME does just that. It’s a 3D printed robot and controller that’s the closest you can get to, ‘the Lego of robots’. All you need to do is plug some wheels into a controller and you’re off to the races.

[Salvador]’s EMME is a brilliant little robot that’s only made of a few generic parts. These parts snap together or join with magnets to turn into any device you can imagine that somehow turns rotation of a wheel into linear motion. All the parts are 3D printed, work without cables or connectors, and the robot itself is controlled by a wireless gem-shaped 3D printed controller.

Already, [Salvador] has on-road wheels for EMME, off-road wheels, above-water wheels, and submersible accessories. This is already an all-terrain robot that’s easy to put together and easy to control, but [Salvador] isn’t done yet. he’s working on new hardware based on the ESP32 and working on the vast amount of documentation required for a robot that can do anything.

You can check out [Salvador]’s pitch video for EMME below.

Continue reading “Hackaday Prize Best Product Finalist: Reconfigurable Robots”

Wooden domino row setup machine

Wooden Domino Laying Machine

[Matthias Wandel]  has come up with another awesome machine, this time a machine that sets up neat rows of dominos. If you’ve followed [Matthias]’s work over the years then you’ll know that this is a wooden version of one he made out of LEGO® back in 2009.

In true [Matthias] fashion he uses just the one motor both for moving the machine along and for pushing the dominos in place. Not satisfied with that efficient use of parts, the rubber band belts that transfer rotation from the motor shaft to the wheels (bearings) double as the rubber surfaces for those wheels. One of many joys from watching [Matthias] work is seeing how he forms wood into shapes that most people would have trouble sculpting from clay. In this case he does this when he needs parts for reaching over his domino magazine to hold a guide rail in place, and of course the parts are well-rounded and clean-looking.

You might also ask, where did he get all the wooden blocks for dominos? He made them of course, all 300 or so.

Be sure to check out the video below of both the build, and of it in action.

Continue reading “Wooden Domino Laying Machine”

FLEX Pager Protocol In Depth

We love pager hacks. One of our earliest head-slappers was completely reverse-engineering a restaurant pager’s protocol, only to find out that it was industry-standard POCSAG. Doh!

[Corn] apparently scratches the same itch, but in the Netherlands where the FLEX protocol is more common. In addition to walking us through all of the details of the FLEX system, he bought a FLEX pager, gutted it, and soldered on an ATMega328 board and an ESP8266. The former does the FLEX decoding, and the latter posts whatever it hears on his local network.

These days, we’re sure that you could do the same thing with a Raspberry Pi and SDR, but we love the old-school approach of buying a pager and tapping into its signals. And it makes a better stand-alone device with a lot lower power budget. If you find yourself in possession of some old POCSAG pagers, you should check out [Corn]’s previous work: an OpenWRT router that sends pages.

3DP Enigma Keyboard Improves On The Original

[Asciimation], who previously created an Enigma Machine wristwatch, decided to go all-in and make a 3D-printed Enigma machine. Not a perfect replica, but rather an improved version that works the same but doesn’t concern itself with historical accuracy. For instance, the current step involves building the keyboard. Rather than trying to re-create the spring-and-pin method of the original, he simply swapped in readily available, double-throw micro switches.

This project has a tremendous amount of fascinating detail. [Asciimation] did his research and it shows; he downloaded blueprints of the original and used hacked digital calipers to precisely measure each rotor’s teeth, so that it could be re-created for printing. He even re-created the Enigma font to ensure that his printed rotor wheels would look right–though in doing so he discovered that the original machine used one typeface for the keyboard, one for the wheels, and one for the indicator lamps.

We previously published [Asciimation]’s Enigma machine wristwatch project, where he simulated the functionality of an Enigma with an Arduino.

Continue reading “3DP Enigma Keyboard Improves On The Original”

Mindstorms Soccer Robot Inspired By Real Soccer Robot

[Bram], a 17-year-old robot fan from the Nertherlands, had an opportunity to watch a RoboCup soccer match played by autonomous robots, and was inspired to create his own Mindstorms version of the robot for a school project.

The robot he created is around 80 cm in diameter and is controlled by four daisy-chained EV bricks. There are nine large motors for controlling the wheels, two more large motors for grabbing the ball, and two medium motors for the ball-shooting mechanism. It uses a Pixycam for ball detection, and it can identify and move toward the ball so long as it’s within 2.5 m. A gyro sensor determines the robot’s rotational direction.

Our favorite detail of the robot is its giant omni wheels, constructed out of LEGO elements. Each one consists of sixteen Mindstorms-standard wheels arranged in a circle, with an offset double row of rollers to give the same angled effect as a Mechanum wheel’s rollers.

This story has even geekier roots. [Bram]’s robot was based off of the Turtle, a soccer-playing robot used to teach programming to college students. Like [Bram]’s creation, they also have omni wheels, and see with a Kinect as well as a 360-degree camera up top that uses a parabolic mirror to keep an eye on its surroundings. The Turtle uses a compass sensor to distinguish its goal from the opposing team’s goal.

We’ve covered soccer bots in the past, watch a soccer-playing robot score on a human goalie.
Continue reading “Mindstorms Soccer Robot Inspired By Real Soccer Robot”

CRT Cataract Surgery

Back in the good old days, people got their information by staring into particle accelerators that could implode at any moment, and we liked it that way, by gum! To protect against disaster, CRT monitors were equipped with a safety screen laminated to the front of the tube. Decades of use often resulted in degradation of the glue used to hold the safety glass on, leading to the dread disease of “CRT cataracts.”

Luckily for aficionados of vintage terminals, [John Sutley] has come up with a cure for CRT cataracts. The video below shows the straightforward but still somewhat fussy process from start to finish. You’ll want to follow [John]’s advice on discharging the high-voltage flyback section of any stored charge; we speak from painful experience on this. With the CRT removed from the case, removing the safety screen is as simple as melting the glue with a hot air gun and applying gentle leverage with a putty knife. We’d think a plastic tool would be less likely to scratch the glass, but [John] managed to get them apart without incident. Acetone and elbow grease cleaned off the old glue, and the restored CRT looks great when reassembled.

With its cataracts cured, [John] says his next step is to restore the wonky keyboard on his Lear Siegler ADM-3A terminal. Perhaps he should look over this VT220 keyboard repair for ideas.

Continue reading “CRT Cataract Surgery”