Smart Eyeglasses That Auto Focus Where You Look

A University of Utah team have a working prototype of a new twist on fluid-filled lenses for correction of vision problems: automatic adjustment and refocus depending on what you’re looking at. Technically, the glasses have a distance sensor embedded into the front of the frame and continually adjust the focus of the lenses. An 8 gram, 110 mAh battery powers the prototype for roughly 6 hours.

Eyeglasses that can adapt on the fly to different focal needs is important because many people with degraded vision suffer from more than one condition at the same time, which makes addressing their vision problems more complex than a single corrective lens. For example, many people who are nearsighted or farsighted (where near objects and far objects far objects and near objects are seen out of focus, respectively) also suffer from a general loss of the eye’s ability to change focus, a condition that is age-related. As a result, people require multiple sets of eyeglasses for different conditions. Bifocal or trifocal or progressive lenses are really just multiple sets of lenses squashed into a smaller form factor, and greatly reduce the wearer’s field of view which is itself a significant vision impairment. A full field of view could be restored if eyeglass lenses were able to adapt to different needs based on object distance, and that is what this project achieves.

Continue reading “Smart Eyeglasses That Auto Focus Where You Look”

Blow Up Your Face

[Yuji Hayashi] and some of his buddies in Tokyo did a fun project at the Tokyo Maker Faire last August that proved to be a big hit. They built a cardboard box which enlarged the wearers face when it was worn. It’s an amazing effect — high resolution and impossible to look at without plastering your face with a huge smile!

Low Poly paper face mask
Low poly paper face mask which prompted this new technique

This work was the result of their frustration with a previous project they did early last year. They would take multiple pictures of a person’s head and use software to stitch up the images. The resulting print on a large sheet of paper was then cut, folded and glued to create a low-poly 3D paper mask of the person. Their bottleneck was that the whole process took well over 2 hours for each mask. Even reducing the mask mesh complexity, and omitting the back of the head didn’t make it much faster. But the activity was so fun, that they had to figure out a way to repeat it but in a simpler and faster way.

Obviously, a different tack was needed. A team member was visiting a research institute and saw a Fresnel lens lying around. He took a picture of himself behind the lens and shared it with the team. They inquired with a lens manufacturer and obtained a sample. After some fiddling to get the right focal distance, it seemed like they had a winner. Attaching the lens to a cardboard box and fixing it to a volunteer head raised another problem. The inside of the box was too dark for the wearers face to be seen clearly. Nothing that some LED strips couldn’t solve. The initial LEDs were cool white and gave a ghostly, pale blue tinge to the wearers face. Warm white LEDs created a much better effect. Finally, it was time to trim the Fresnel lens (done easily using a sharp blade) and to wrap up the project. On the day the Maker Faire opened, they had a set of four of these “face magnifiers” available for visitors to have fun with. As the pictures show, the result was awesome, and way better than the original, paper mask idea. Not surprising, given that the Japanese love their Animé and Manga comics and are great fans of Cosplay.

If this project stirs up your creativity, then let us goad you towards Hackaday’s 2017 Sci-Fi Contest where you can submit an awesome Sci-Fi Project to win some cool prizes.

Well, That Was Quick: Heng Lamp Duplicated

That didn’t take long at all! We covered a pretty cool lamp with a novel magnetic switch mechanism, and [msraynsford] has his version laser cut, veneered, a video posted on YouTube (embedded below), and an Instructable written up before we’d even caught our breath.

For those who missed it, the original Heng lamp is a beautiful design with a unique take on a magnetic switch. As with the original, the secret sauce is a switch inside that’s physically held closed by the two magnets. It’s a pretty clever mechanism that looks magical to boot.

[msraynsford]’s version replaces the floating spheres with floating cylinders, which are easier to fabricate in layers on a laser cutter, but otherwise the copy is fairly true to the aesthetics of the original. Pretty sweet!
Continue reading “Well, That Was Quick: Heng Lamp Duplicated”

I’m BatBot

How would you like a bat bot for your next pet drone? Researchers from the University of Illinois at Urbana-Champaign’s Coordinated Science Laboratory and from the California Institute of Technology, created a bat drone. This is not your regular drone; it’s not a styrofoam, bat-shaped, four-propeller kind of drone. It’s a drone that mimics not only the shape but the movement of the bats wings to achieve flight.

The biomimetic robotic platform, dubbed Bat Bot B2, is an autonomous flying robot. The wing mechanics are controlled by a brushless DC motor for the wing flapping along with four wings actuators to provide linear motion that allows the wings to further change shape in flight. The wings are made of a 56-micron, silicone-based membrane (thinner than an average condom), which for sure helps with their elasticity as well as reducing overall weight, which is only 93 grams.

The bat has only made twenty flights so far, ranging up to 30 meters with some rough landings. It’s not much yet, but the prototype looks pretty slick. We covered another bat bot back in 2012 but the original information is no longer available, and we don’t know what happened to that project. There was also no video. In contrast, you can watch Bat Bot B2 glide.

Continue reading “I’m BatBot”

The Ultimate FPV Cleans House

With much of the world in the doldrums of the winter, hackers are getting a bit stir crazy. [Notamed Closed] would much rather be outside flying his First Person View (FPV) quadcopters. Sure there are indoor drones, but [Notamed] wanted to keep grounded. He grabbed his R/C equipment, his Roomba, and of course an Arduino to build the ultimate FPV experience.

There aren’t many details on this build, but it’s not too hard to deduce what [Notamed] has done. He’s using a standard R/C transmitter and receiver. Instead of driving servos, the receiver plugs into an Arduino Uno. The Uno translates the PPM R/C signals to serial commands. Most Roomba’s include a serial port made especially for hackers. [Notamed] simply sends the proper iRobot Serial Command Interface (SCI) messages, and the robot is his to control.

The FPV side of things is a bog standard FPV camera and transmitter, sending standard definition video to his goggles. A GoPro is along for the ride to capture high-quality video.

Sure this is a quick hacked together build. All the parts are taped on to the Roomba. We’re sure this is on purpose. When the weather warms up, the R/C equipment goes back in the air, and the Roomba becomes just another vacuuming robot – once again a danger to pet messes everywhere.

Check out the video after the break.

Continue reading “The Ultimate FPV Cleans House”

Robot Leaps Uncanny Valley On Backward Knees

We’ve covered a ton of Boston Dynamics robots but this is the second one in a row that has shown a departure from what a lot of people’s notion of an ‘advanced’ robot should look like. It’s a cellphone camera clip of a video played at a conference, but at least it isn’t vertical video — kudos to [juvertson]. At about 3:40 seconds into the video you get a good look “Handle” at a four-limbed robot with backwards joints and wheel.

This design makes a lot of sense and it’s good to see Boston Dynamics thinking about unique robot kinematics alongside the realities of motion. The result is something that appears neither human nor animal — it’s definitely not natural. Despite the presenter’s assertion that this will be nightmare-inducing, we think it’s the opposite, since it doesn’t tweak that string in your brain that cries “predator”.

Obviously this is what we’d call a self-balancer. But two-wheels-plus-rigid-frame it is not. The articulated lower limbs allow it to shift its mass over the wheels. The upper limbs play their part in balancing, at one point acting in the same way a figure skater’s arms would during a spin. And its dexterity in hopping over an obstacle is only made better by [juvertson’s] commentary. This is a really good balance between purely wheeled and purely humanoid designs and a nice addition to the evolution of robotics.

Continue reading “Robot Leaps Uncanny Valley On Backward Knees”

Jamming WiFi By Jumping On The ACK

As we fill our airwaves with more and more wirelessly connected devices the question of what could disrupt this systems becomes more and more important. Here’s a particularly interesting example because the proof of concept shows that you don’t need specialized hardware to pull it off. [Bastian Bloessl] found an interesting tweak to previous research that allows an Atheros WiFi card to jam WiFi by obscuring ACK frames.

The WiFi protocol specifies an Acknowledgement Frame (ACK) which is sent by the receiving device after error correction has been performed. It basically says: “yep, I got that data frame and it checks out”. This error correcting process turns out to be the key to [Bastian’s] technique as it provides time for the attack hardware to decide if it’s going to jam the ACK or not.

The jamming technique presented by [Mathy Vanhoef] at the end 2014 outlined both constant and selective jamming. The selective part involved listening for data packets and analyzing them to determine if they are headed to a MAC the attacker wishes to jam. The problem is that by the time your commodity hardware has decoded that address it’s too late to jam the packet. [Bastian] isn’t trying to jam the data frame, he’s jamming the ACK that the receiver sends back. Without that acknowledgement, the sender will not transmit any new data frames as it assumes there is a problem on the receiving end.