USB Rotary Phone: A Lync To The Past

[Ivan] is fed up with all this rampant virtualization. When his company took away his physical desk phone in favor of using MS Lync, he was driven to build a USB rotary phone. His coworkers loved it and one of them asked [Ivan] to build another. The build log focuses on converting his coworker’s vintage brass and copper number that must weigh a ton.

He had to do a bit more work with this one because it had rusted out inside and a few of the contacts were bent. The good news is that the speaker and microphone were in working order and he was able to use them both. After restoring the stock functionality, he added a USB sound card and created a USB keyboard using a PIC32MX440F256H.

The rotary phone’s dial works using two switches, one that’s open and one that’s closed when no one is dialing. Once dialing is detected, the open switch closes and the closed switch clicks according to the dialed digit (ten clicks for 0). [Ivan] also reads the switch hook state and has added debouncing. This gave him some trouble because of the quick response expected by the PC bus, but he made use of interrupts and was allowed to keep his seat.

Please stay on the line. [Ivan]’s videos will be with you shortly.

Continue reading “USB Rotary Phone: A Lync To The Past”

Judge Spotlight: Andrew “Bunnie” Huang

judge-spotlight-bunnie

This week’s Judge Spotlight focuses on [Andrew “Bunnie” Huang]. If you haven’t heard of him you need to pay more attention. His hacker cred goes way back to the original Xbox, which he reverse engineered and laid bare its security flaws. Maintaining his hacker spirit he went on to design and hack the Chumby. More recently he took on the challenge of developing and Open laptop called Novena. All of this while continuing to explore and experiment with all kinds of electronics, posting about his adventures for those of us that care about an electronics ecosystem that doesn’t shut out the user from tinkering with the hardware. Join us after the break for our conversation with The Hackaday Prize judge [Bunnie Huang].

Continue reading “Judge Spotlight: Andrew “Bunnie” Huang”

Retrotechtacular: We’re Gonna Have Manual Transmissions The Way My Old Man Told Me!

archimedesSimple machines are wonderful in their own right and serve as the cornerstones of many technological advances. This is certainly true for the humble lever and the role it plays in manual transmissions as evidenced in this week’s Retrotechtacular installment, the Chevrolet Motor Company’s 1936 film, “Spinning Levers”.

This educational gem happens to be a Jam Handy production. For you MST3K fans out there, he’s the guy behind shorts like Hired! from the episodes Bride of the Monster and the inimitable Manos: The Hands of Fate. Hilarity aside, “Spinning Levers” is a remarkably educational nine-ish minutes of slickly produced film that explains, well, how a manual transmission works. More specifically, it explains the 3-speed-plus-reverse transmissions of the early automobile era.

It begins with a nod to Archimedes’ assertion that a lever can move the world, explaining that the longer the lever, the better the magic. In a slightly different configuration, a lever can become a crank or even a double crank. Continuous motion of a lever or series of levers affords the most power for the least work, and this is illustrated with some top-drawer stop motion animation of two meshing paddle wheels.

gearsNext, we are shown how engine power is transferred to the rear wheels: it travels from a gear on the engine shaft to a gear on the drive shaft through gears on the countershaft. At low speeds, we let the smallest gear on the countershaft turn the largest gear on the drive shaft. When the engine is turning 90 RPM, the rear wheel turns at 30 RPM. At high speeds using high gears, the power goes directly from the engine shaft to the drive shaft and the RPM on both is equal. The film goes on to explain how the gearbox handles reverse, and the vast improvements to transmission life made possible through synchromesh gearing.

Continue reading “Retrotechtacular: We’re Gonna Have Manual Transmissions The Way My Old Man Told Me!”

Cold War Clock Is All Tubes

A clock built from tubes

 

Clocks are great projects to build. They serve a real purpose, and there’s a wide variety of ways to implement a unique timepiece. [Hank]’s Cold War Clock only uses parts and technologies that were available in 1959. It contains no semiconductors, but has an audible alarm and reasonable time accuracy.

Looking through the hand drafted schematics, you’ll find a number of Dekatron tubes. These vintage components are used as registers to store and count the time. [Hank] found some cheap Soviet Dekatrons, but had to machine his own sockets to connect them. These tubes do the counting, but the actual display consists of nixies.

A cost estimate puts this clock at $2130 in 1959, which equates to $17040 today. Clearly this would be outside the price range of most hobbyists. The actual build cost [Hank] around $1600.

There’s some intricate details in this build. The front panel has an authentic look to it, and the manual has instructions for “demolition of clock to prevent enemy use.” [Hank] calls it a “creative anachronism.” In a sense, it’s a reproduction of a product that never actually existed.

A video of this clock in action, including the Cold War era alarm, is after the break.

Continue reading “Cold War Clock Is All Tubes”

Hey There Little Plant. Let’s Be Friends!

poster_01_01

Perhaps, you’re circle of friends is getting too small. Or maybe, you just want to communicate with the leafy, green beings that have rooted themselves in the soil inside your house. If so, this environmental monitoring system will be perfect for you!

Created by [Dickson], this project monitors soil moisture, air temperature, and air humidity of your indoor plants and will alert you via email and SMS when your plants are thirsty. No longer will your sprouts shrivel up in the sun, but rather, they will be well-hydrated ready to produce their veggie goodness.

The system is battery operated, wireless, Arduino and Raspberry Pi based and comes with an Android app, which in turn allows you to view real-time and historical data, thus giving you the option to check in on your crew of Chlorophyll-embedded friends.

3116051405904844105

Let’s look at the sensors which are at work on the project.

Continue reading “Hey There Little Plant. Let’s Be Friends!”

Monster 100W LED Flashlight Produces A Whopping 8500lm!

100W LED Flashlight

[Yannick] got a hold of a 100W LED diode recently, and like any self-respecting hacker, he just had to turn it into a ridiculously over powered flash light.

The tricky thing about these diodes is that they need a high amount of DC voltage, anywhere from 32-48V typically. [Yannick’s] using a 12V sealed lead acid battery coupled with a 600W constant current boost converter which ups it to 32V at around 3.2A. He also managed to find a giant aluminum heat-sink to keep the diode from getting too hot. A 120mm fan helps to keep the heat sink nice and cool, which allows the light to be run constantly without fear of burning it out. But just in case he also has an Arduino monitoring the temperatures — oh and it provides PWM control to adjust the brightness of the light!

To focus the flashlight he bought a proper lens and reflector which can be mounted directly to the diode. At full power the LED puts out around 8500lm, which is brighter than almost all consumer projectors available — or even the high beams of a car!

Continue reading “Monster 100W LED Flashlight Produces A Whopping 8500lm!”

What Could You Do With 7 Fingers?

7 finger robotic glove

A strange thought yes, but MIT researchers think an extra two digits could really make a difference in many people’s lives. And as it turns out, having an extra robotic grasp allows you to do quite a few things single handed.

The extra two fingers provide three degrees of freedom each, and are mounted off the user’s wrist. A series of position recording sensors attached to the glove provide feedback to the system in order to control the fingers naturally, just by using your hand normally.

They taught the algorithm that controls the fingers by trying to pick up different (large) items using the hand and manually positioning the fingers. What they discovered is almost every grasp could be demonstrated as a combination of only 2-3 grip patterns.  Continue reading “What Could You Do With 7 Fingers?”