Open Source Tracked Robot Supports STEM In Africa

A lot of hacker projects start with education in mind. The Raspberry Pi, for example, started with the goal of making an affordable classroom computer. The Shrimp is a UK-based bare-bones Arduino targeted at schools. We recently saw an effort to make a 3D printed robotic platform aimed at African STEM education: The Azibot.

Azibot has 3D printed treads, a simple gripper arm, and uses an Arduino combined with Scratch. Their web site has the instructions on how to put together the parts and promises to have the custom part of the software available for download soon.

Continue reading “Open Source Tracked Robot Supports STEM In Africa”

Hackaday Links: October 18, 2015

We have our featured speakers lined up for the Hackaday Supercon, one of which is [Fran Blanche]. We’ve seen a lot of her work, from playing with pocket watches to not having the funding to build an Apollo Guidance Computer DSKY. In her spare time, she builds guitar pedals, and there’s a biopic of her in She Shreds magazine.

Halloween is coming, and that means dressing children up as pirates, fairies, characters from the latest Marvel and Disney movies, and electrolytic capacitors.

There’s a new movie on [Steve Jobs]. It’s called the Jobs S. It’s a major upgrade of the previous release, featuring a faster processor and more retinas. One more thing. Someone is trying to cash in on [Woz]’s work. This time it’s an auction for a complete Apple I that’s expected to go for $770,000 USD.

Hackaday community member [John McLear] is giving away the factory seconds of his original NFC ring (think jewelry). These still work but failed QA for small reasons and will be fun to hack around on. You pay shipping which starts at £60 for 50 rings. We’ve grabbed enough of them to include in the goody bags for the Hackaday Superconference. If you have an event coming up, getting everyone hacking on NFC is an interesting activity. If you don’t want 50+, [John] is also in the middle of a Kickstarter for an improved version.

Your 3D printed parts will rarely come out perfectly. There will always be some strings or scars from removing them from the bed. There’s a solution to these problems: use a hot air gun.

Everyone has a plumbus in their home, but how do they do it? First, they take the dinglebop, and smooth it out with a bunch of schleem. The schleem is then repurposed for later batches.

Potato Battery Cell

The Practical Potato Cell

Potato batteries, lemon batteries, they’re all good fun for the classroom — but is there a way of making them better? [Marcel Varallo] decided to give it a shot — and we gotta admit, it’s a pretty cool idea!

Normally for these fruit and vegetable batteries you poke some leads into the battery, connect it to a clock, and bob’s your uncle. But what if we made them resemble batteries? [Marcel] took some copper pipe, cut it down to size, and poked it through a potato. Now he had a potato-cored, copper tube. Stick a zinc nail in the middle, and you’ve got yourself a battery cell! Or as [Marcel] likes to put it.. a Mar-Cell. Or the more scientific term.. the Solanum tuberosum based electron differencer V1.0.

Each potato cell produces approximately 0.8V, so if you throw eight in series, you’ll have the equivalent of a 6V battery, just maybe not the same mAh rating.

For another cool way to demonstrate electricity to youngsters, we love this lemon battery hack — it’s actually quite elegant.

Raspberry Pi Tablet Based On Sailfish OS

There are so many hacks in this project it’s hard to know where to start. So let’s start at the SailPi tablet which is a Raspberry Pi running the Sailfish OS on an LCD touch screen powered by a cell phone battery pack. The design looks more like a high-tech sandwich with the Pi in the middle than a tablet. Despite the appearance it works, at that’s what counts. COs98UBWsAAQNh5The creator, [Aleksi Suomalainen] expended a lot of effort pulling all the pieces together on this project.

The Sailfish OS project is targeted at creating a new OS for mobile devices, especially cell phones. It is open source which invites developers to contribute to the project. The touch screen user interface is designed for ease of use by gestures from one finger on the hand holding the phone.

[Aleksi] ported Sailfish to a Pi 2 during a hacking week. He’s shared the code for it on his blog. During the hack week he played with accessing the GPIO on the Pi to flash an LED. To get you up and running quickly he provided an image you can load onto an SD.

It appears the Pi is finding a niche for OS hackers in addition to the hardware hackers using the GPIO.

Don’t miss the demo after the break to see the OS running on the Pi. Continue reading “Raspberry Pi Tablet Based On Sailfish OS”

Coke-Propane Rocket Blasts Off Without Ignition

Everyone’s seen the Diet Coke and Mentos “experiment” that ends in a brown eruption. But have you seen the Coke and Propane experiment insanity that results in a rocket launch? As [Itay] pointed out when he sent us the tip, this doesn’t need to be lit. The simple act of turning the bottle upside down starts a powerful reaction without any ignition.

coke-propane-rocket-thumbOf course it’s the how of this that tickles our brains, but let’s finish the setup. This starts with a bottle of Coke which is about 3/4 full. The head space is displaced by spraying propane into the bottle; propane is heavier than air. All that’s left is to turn the bottle upside down and pray it doesn’t smack anyone in the noggin as it takes off.

In trying to find an explanation for this phenomenon we came across a plausible answer on the Chemistry StackExchange. It points to the Mentos phenomenon combined with the temperature differential caused by the very cold propane. The answering user theorizes that tiny ice crystals form and when the bottle is turned upside down the cold propane and micro crystals rise through the warmer soda acting as a much more rapid catalyst than Mentos alone. Of course this is just a theory so please share your own ideas below.

We thought the folks who microwave stuff outside of a microwave enclosure had their fill of danger but this videos is also one of theirs. It should be no surprise that they also tried the experiment with an ignition source. That video is found after the break and should immediately convince you to never try any of this yourself.

Continue reading “Coke-Propane Rocket Blasts Off Without Ignition”

FPGAs For The Raspberry Pi

FPGA development has advanced dramatically in the last year, and this is entirely due to an open-source toolchain for Lattice’s iCE40 FPGA. Last spring, the bitstream for this FPGA was reverse engineered and a toolchain made available for anything that can run Linux, including a Raspberry Pi. [Dave] from Xess thought it was high time for a Raspberry Pi FPGA board. With the help of this open-source toolchain, he can program this FPGA board right on the Raspberry Pi.

The inspiration for [Dave]’s board came from the XuLA and StickIt! boards that give the Raspberry Pi an FPGA hat. These boards had a problem; the Xilinx bitstreams had to be compiled on a ‘real’ PC and brought over to the Raspberry Pi world. The new project – the CAT Board – brings an entire FPGA dev kit over to the Raspberry Pi.

The hardware for the CAT Board is a Lattice iCE-HX8K, 32 MBytes of SDRAM, a serial configuration flash, LEDs, buttons, DIP switches, grove connectors, and SATA connectors (although [Dave] is just using these for differential signals; he doesn’t know if he can get SATA hard drives to work with this board).

Despite some problems with his board house, [Dave] eventually got his FPGA working, or at least the bitstream configuration part, and he can blink a pair of LEDs with a Raspberry Pi and programmable logic. The Hello World for this project is done, and now the only limit is how many gates are on this FPGA.

Continue reading “FPGAs For The Raspberry Pi”

Guinea pig power

Guinea Pig Methane Power!

Half-way around the world, a couple in Peru is harnessing the power of guinea pig poop, to generate methane for their farm. We couldn’t make that up if we tried.

The couple are a pair of retired plant physiology professors who have taken to running a sustainable agriculture program in their very own villa called Casa Blanca. It’s a beautiful set of gardens complete with a lab for research. But the most curious thing is the thousand guinea pigs they raise. They have a special shed for them with small compartments separated by brickwork. The guinea pigs eat specialized plant waste, and in turn, produce an astonishing 3 tonnes of fecal matter per month.

They use around 200kg of the excrement to power their very own bio-digester which in turn produces 3 cubic meters of methane per day which they use for powering their villa. The rest of it is used for fertilizer that they sell to local farms.

Continue reading “Guinea Pig Methane Power!”