[Tesla500] Builds A High-Speed Video Camera

[Tesla500] has a passion for high-speed photography. Unfortunately, costs for high-speed video cameras like the Phantom Flex run into the tens or even hundreds of thousands of dollars. When tools are too expensive, you do the only thing you can – you build your own! [Tesla500’s] HSC768 is named for the data transfer rate of its image sensor. 768 megapixels per second translates to about 960MB/s due to the 10 bit pixel format used by the On Semiconductor Lupa1300-2 image sensor.

This is actually [Tesla500’s] second high-speed camera, the first was HSC80, based upon the much slower Lupa300 sensor. HSC80 did work, but it was tied to an FPGA devboard and controlled by a PC. [Tesla500’s] experience really shows in this second effort, as HSC768 is a complete portable system running Linux with a QT based GUI and a touchscreen. A 3D printed case gives the camera that familiar DSLR/MILC  shape we’ve all come to know and love.

The processor is a Texas Instruments TMS320DM8148 DaVinci, running TI’s customized build of Linux. The DaVinci controls most of the mundane things like the GUI, trigger I/O, SD card and SATA interfaces. The real magic is the high-speed image acquisition, which is all handled by the FPGA. High-speed image acquisition demands high-speed memory, and a lot of it! Thankfully, desktop computers have given us large, high-speed DDR3 ram modules. However, when it came time to design the camera, [Tesla500] found that neither Xilinx nor Altera had a FPGA under $1000 USD with DDR3 module support. Sure, they will support individual DDR3 chips, but costs are much higher when dealing with chips. Lattice did have a low-cost FPGA with the features [Tesla500] needed, so a Lattice ECP3 series chip went into the camera.

The final result looks well worth all the effort [Tesla500] has put into this project. The HSC768 is capable of taking SXGA (1280×1024) videos at 500 frames per second, or 800×600 gray·scale images at the 1200 frames per second. Lower resolutions allow for even higher frame rates.  [Tesla500] has even used the camera to analyze a strange air oscillation he was having in his pneumatic hand dryer.  Click past the break for an overview video of the camera, and the hand dryer video. Both contain some stunning high-speed sequences!

Continue reading “[Tesla500] Builds A High-Speed Video Camera”

Knitting In The Round

There have been a few posts on Hackaday over the years involving knitting, either by modifying an old Brother knitting machine to incorporate modern hardware, or by building a 3D printed knitting machine. All of these hacks are examples of flat knitting, and are incapable of making a seamless tube. Circular Knitic bucks that trend by using 3D printing and laser cutters to create an open source circular knitting machine.

Circular Knitic is an expansion on an earlier build that gave a new brain to old Brother knitting machines from the 70s. This build goes well beyond simple manipulation of electrons and presents an entire knitting machine specifically designed for circular knitting. It’s completely automated, so once the machine is set up, a giant tube of knit yarn is automagically created without any human intervention.

This isn’t the first completely open source knitting machine; OpenKnit can be made with aluminum extrusion, some electronics, and a few 3D printed parts. Circular Knitic is, however, the first circular knitting machine we’ve seen, and according to the Github is completely open source.

The creators of Circular Knitic, [Varvara] and [Mar] have been showing off their machine at an exhibition in Zaragoza, Spain called DOERS, where they’ll be knitting for the better part of six months. You can see some video of that below.

Continue reading “Knitting In The Round”

Etching Steel With A DC Wall Wart

[Dan Comeau] is a modern-day Renaissance DIY Jedi — or so he says… He loves re-purposing things and hacking in general. But one of his favorite pastimes is producing custom hand-made knives. He etches his logo on each, using a professional etching machine, but when a fan asked how to do it themselves, he came up with this simple and easy way to etch metal at home with a few things you probably already have!

It’s actually incredibly simple. Just by cracking open a DC power supply (a wall wart will do just fine), you can easily make your own etching/marking device with a few modifications. Ideally you want something in the range of 5-12VDC at 1A or more.  Continue reading “Etching Steel With A DC Wall Wart”

USB Cap

Never Forget Your USB Stick Again

USB sticks are very handy. They are a very portable and relatively inexpensive means of storing data. Possibly the most annoying part about using one of these devices is when you inevitable leave it behind somewhere by accident. This is especially true if it contains sensitive information. [Eurekaguy] feels your pain, and he’s developed a solution to the problem.

[Eurekaguy] designed a custom cap for USB sticks that beeps approximately every minute after the USB stick has been plugged in for five minutes. The cap is 3D printed and then slightly modified with four 1mm holes. Two wires are routed between these holes to make contact points for the VCC and GND pins of the USB stick.

The beep circuit is comprised of a tiny PIC12F629 microcontroller along with a couple of other supporting components. The circuit is wired together dead bug style to conserve space. Three AG5 batteries power the circuit. A small piezo speaker provides the repeating beep to remind you to grab your USB stick before you walk away from the computer.

[Thanks Irish]

Animate Your Artichoke With A Lathe And Camera

Spirals, fractals, and even bone length proportions whisper of a consistent ratio woven into the universe. Math is hidden in the fabric of things, and when this fact is observed in art, magic happens. Professor, artist, and inventor [John Edmark] draws inspiration from geometric patterns found in nature and builds sculptures using the golden ratio as a standard for design. In this project, he expresses these characteristics through animated biomorphic zoetropes.

goldenratio2[John] modeled several 3D sculptures in Rhino containing similar geometric properties to those found in pinecones and palm tree fronds. As the segments grow from those objects in nature, they do so in approximately 137.5 degree intervals. This spacing produces a particular spiral appearance which [John] was aiming to recreate. To do so, he used a Python script which calculated a web of quads stretched over the surface of a sphere. From each of the divisions, stalk-like protrusions extend from the top center outward. Once these figures were 3D printed, they were mounted one at a time to the center of a spinning base and set to rotate at 550 RPM. A camera then films the shape as it’s in motion at a 1/2000 sec frame rate which captures stills of the object in just the right set of positions to produce the illusion that the tendrils are blooming from the top and pouring down the sides. The same effect could also be achieved with a strobe light instead of a camera.

[John] has more information on his instructables page. He also provides a video of this trick working with an actual artichoke; one of the living examples of the golden ratio which this project was inspired by. Thank you, [Charlie Nordstrom] for helping him document these awesome sculptures and for telling us about them!

Continue reading “Animate Your Artichoke With A Lathe And Camera”

Choctopus Chocolate Printer X8

Valentine’s Day is about a month away, long enough for everyone to butcher upgrade their 3D printers to squirt out chocolate. Food printing was a hot item at this year’s CES, but it is hardly new. Before many of you were born [Hans] left his job at the Council for Scientific and Industrial Research to produce chocolate out of his garage in South Africa. This one prints 8 at a time!

HAD - Choctopus1Many years before he was extruding lawnmowers from raw pellets, [Hans] built the 8-tentacled Choctopus. He gets away with using only one chocolate pump – from some experience, by far the most challenging component – by simply splitting the ooze pipe with three tiers of T intersections. The whole design is actually patented and revolutionary for 19 years ago but to our readers probably unremarkable.

HAD - Choctopus4There is a business lesson here too. Once upon a time the Choctopus was a  3D printer but economic constraints have led to him downgrading to 2D. Any 3D requirements are served from an alternate RepRap. The purpose of an 8-armed printer is to mass produce, but for the price, most clients were only interested in a one-off. The products that pay the bills are the much more affordable 2d extrusions in bulk.

Any of our readers looking to impress their date make lots of money next month, consider this the kick in your pants to get started.

Check out these videos of the Choctopus churning out delicious delicatessens.

Continue reading “Choctopus Chocolate Printer X8”

MYST Linking book

Myst Linking Book

[Daniel] was looking for a special gift to make for his close friend. His friend is a huge fan of the Myst franchise which made the decision easy — why not make a Myst Linking Book?

After doing some research he discovered that the book in the game footage was a Harper’s New Monthly Magazine, Volume LIV, Issue 312 from 1877. He attempted to find one on eBay but they were pretty expensive — and in pretty rough shape. So instead he settled on a copy of Scribner’s Monthly Magazine,Volume XL, Nov 1875 to Apr 1876. Not quite identical but close enough!

His original plan was to embed a Raspberry Pi with an LCD screen to show off the Myst videos, but then discovered the cheap and easy to use video greeting card modules, which you can pick up for $10-20 from China. They typically let you store about five videos and use a magnetic reed switch to activate — almost like it was designed for this project!

Continue reading “Myst Linking Book”