Hackaday Prize 2023: One-Handed Soldering With The Solder Sustainer

For a lot of us, soldering has become so ingrained that it’s muscle memory. We know exactly when the iron is hot enough, how long to leave the tip in contact with the joint to heat it up, and exactly where to dab in the solder to get it to flow. When you’re well-practiced it can be a beautiful thing, but for those who don’t do it frequently, soldering can be frustrating indeed.

The “Solder Sustainer” looks like it just might be aimed at solving that problem, as well as a few others. It comes to us from [RoboticWorx], and while it looks a little like the love child of a MIG welder and a tattoo machine, it’s got a lot going for it. The idea is to make soldering a one-handed task by combining the soldering iron and a solder wire feeder into one compact package. The solder feeder is very reminiscent of a filament extruder on a 3D printer, using a stepper to drive spring-loaded pinch wheels, which forces the solder down a curved 3D-printed tube that directs it toward the tip. The pancake stepper is driven by an ESP32, which also supports the touch sensor that lets you advance the solder. The whole thing can be powered off a USB-C power supply, or using the onboard USB charger that can be connected in line with the soldering iron supply.

The video below shows Solder Sustainer in use. Yes, we know — some of those joints look a little iffy. But that seems to have more to do with technique than with the automatic solder feed. And really, in situations where you’ve previously wished for a third hand while soldering, this would probably be just the thing.

The Solder Sustainer is an entry in the “Gearing Up” round of the 2023 Hackaday Prize. If you’ve got an idea for a tool, jig, fixture, or instrument that makes hacking easier, we want to know about it. But you’d better hurry — the round ends on August 8.

Continue reading “Hackaday Prize 2023: One-Handed Soldering With The Solder Sustainer”

Hackaday Prize 2023: Green Hacks Finalists

Time and tide wait for no hacker, even if they happen to spend their spare time working on the sort of eco-friendly projects that qualified for the Green Hacks challenge of the 2023 Hackaday Prize. This environmentally conscious round ended last month, and after plenty of carbon-neutral debate, our panel of judges have settled on their ten favorite projects.

As a reminder, the following projects will not only receive a $500 cash prize, but will move on to the Finals. They’ll then have until October to put the finishing touches on their creations in an effort to claim one of the final six awards, which includes the Grand Prize of $50,000 and a residency at the Supplyframe DesignLab. Although there can only be ten finalists for each round of the Hackaday Prize, we’d like to thank everyone who put the time and effort into submitting their Green Hacks. We’ve only got one Earth, and we’re all going to have to work together if we want to make sure it stays beautiful for future generations.

Continue reading “Hackaday Prize 2023: Green Hacks Finalists”

A Cycle-Accurate Sega Genesis With FPGA

The Field-Programmable Gate Array (FPGA) is a powerful tool that is becoming more common across all kinds of different projects. They are effectively programmable hardware devices, capable of creating specific digital circuits and custom logic for a wide range of applications and can be much more versatile and powerful than a generic microcontroller. While they’re often used for rapid prototyping, they can also recreate specific integrated circuits, and are especially useful for retrocomputing. [nukeykt] has been developing a Sega Genesis clone using them, with some impressive results.

The Sega Genesis (or Mega Drive) was based around the fairly common Motorola 68000 processor, but this wasn’t the only processor in the console. There were a number of coprocessors including a Z80 and several chips from Yamaha to process audio. This project reproduces a number of these chips which are cycle-accurate using Verilog. The chips were recreated using images of de-capped original hardware, and although it doesn’t cover every chip from every version of the Genesis yet, it does have a version of the 68000, a Z80, and the combined Yamaha processor working and capable of playing plenty of games.

The project is still ongoing and eventually hopes to recreate the rest of the chipset using FPGAs. There’s also ongoing testing of the currently working chips, as some of them do still have a few bugs to work out. If you prefer to take a more purist approach to recreating 90s consoles, though, we recently featured a project which reproduced a Genesis development kit using original hardware.

Thanks to [Anonymous] for the tip!

Hackaday Podcast 230: Space Science, Superconductors, Supercaps, And Central Air

This week, Editor-in-Chief Elliot Williams and Managing Editor Tom Nardi start things off by tackling a pair of science stories, one that may or may not change the world, and the other that hopes to help us understand the very fabric of the universe. Afterwards they get to the important stuff: the evolution of Game Boy Camera hacking, the finer points of 3D print orientation, and mixing up electrically conductive concrete at home. From there the conversation shifts to a couple of 486 Turbo buttons, a quick yoke recipe, and a very handsome open source vacuum pickup tool. Stick around until the end to hear about the folly of humanoid robots, and the latest operating system to get the Jenny List treatment.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Or download it yourself in fantastic MP3 format!

Continue reading “Hackaday Podcast 230: Space Science, Superconductors, Supercaps, And Central Air”

Metal Forming With A 3D Printer

How do you use a 3D printer to bend metal? One way would be to take it to a machine shop and offer to trade the owner your printer for some time in their shop. A smarter way is to do like [Jaba 3D], and print dies using the printer. You can then use those dies in a press to make the shapes you want.

In the case of [Jaba], the Harbor Freight press uses a hydraulic cylinder to develop about 6 tons of pressure. We don’t think Harbor Freight carries this particular press, but for between $150 and $250, you can get a 12-20 ton press, and, of course, there are other suppliers, as well.

The target object, in this case, was an automotive bracket. The process of grabbing an image, converting it to an SVG, and then creating a 3D part has many uses. Apparently, PLA is sufficient for this purpose, although the print uses ten top and bottom layers along with 80% infill. That does make the prints take a long time.

As you might expect, the dies don’t last very long. In this case, they needed two shots, and they got them, but PLA is probably not the right material if you wanted to go for mass production.

Metal forming does occur at large scales, too. If you want to make your own press-forming tools, we have advice for you.

This Week In Security: Your Car’s Extended Warranty, Seizing The Fediverse, And Arm MTE

If you’ve answered as many spam calls as I have, you probably hear the warranty scam robocall in your sleep: “We’ve been trying to reach you about your car’s extended warranty.” That particular robocalling operation is about to run out of quarters, as the FCC has announced a nearly $300 million fine levied against that particular operation. The scammers had a list of 500 million phone numbers, and made over five billion calls in three months. Multiple laws were violated, including some really scummy behavior like spoofing employer caller ID, to try to convince people to pick up the call.

Now, that record-setting fine probably isn’t ever going to get paid. The group of companies on the hook for the amount don’t really exist in a meaningful way. The individuals behind the scams are Roy Cox and Aaron Jones, who have already been fined significant amounts and been banned from making telemarketing calls. Neither of those measures put an end to the problem, but going after Avid Telecom, the company that was providing telephone service, did finally put the scheme down.

Mastodon Data Scooped

There are some gotchas to Mastodon. Direct Messages aren’t end-to-end encrypted, your posts are publicly viewable, and if your server operator gets raided by law enforcement, your data gets caught up in the seizure.

The background here is the administrator of the server in question had an unrelated legal issue, and was raided by FBI agents while working on an issue with the Mastodon instance. As a result, when agents seized electronics as evidence, a database backup of the instance was grabbed too. While Mastodon posts are obviously public by design, there is some non-public data to be lost. IP addresses aren’t exactly out of reach of law enforcement, it’s still a bit of personal information that many of us like to avoid publishing. Then there’s hashed passwords. While it’s better than plaintext passwords, having your password hash out there just waiting to be brute-forced is a bit disheartening. But the one that really hurts is that Mastodon doesn’t have end-to-end encryption for private messages. Continue reading “This Week In Security: Your Car’s Extended Warranty, Seizing The Fediverse, And Arm MTE”

Stack of Si3N4-LiNbO3 forming the integrated laser and integrated into test setup (d). (Credit: Snigirev et al., 2023)

Fast Adjustable Lasers Using Lithium Niobate Integrated Photonics

Making lasers smaller and more capable of rapidly alternating between frequencies, while remaining within a narrow band, is an essential part of bringing down the cost of technologies such as LiDAR and optical communication. Much of the challenge here lies understandably in finding the right materials that enable a laser which incorporates all of these properties.

A heterogeneous Si3N4–LiNbO3 chip as used in the study. (Credit: Snigirev et al., 2023)

Here a recent study by [Viacheslav Snigirev] and colleagues (press release) demonstrates how combining the properties of lithium niobate (LiNbO3) with those of silicon nitride (Si3N4) into a hybrid (Si3N4)–LiNbO3 wafer stack allows for an InP-based laser source to be modulated in the etched photonic circuitry to achieve the desired output properties.

Much of the modulation stability is achieved through laser self-injection locking via the microresonator structures on the hybrid chip. These provide optical back reflection that forces the laser diode to resonate at a specific frequency, providing the frequency lock. What enables the fast frequency tuning is that this is determined by the applied voltage on the microresonator structure via the formed electrodes.

With a LiDAR demonstration in the paper that uses one of these hybrid circuits it is demonstrated that the direct wafer bonding approach works well, and a number of optimization suggestions are provided. As with all of these studies, they build upon years of previous research as problems are found and solutions suggested and tested. It would seem that thin-film LiNbO3 structures are now finding some very useful applications in photonics.

(Heading image: Stack of Si3N4-LiNbO3 forming the integrated laser and integrated into test setup (d). (Credit: Snigirev et al., 2023) )