Injection Molding With Hot Glue

Injection molding is simply forcing a melted thermoplastic into a mold of some sort, letting it cool, and then prying the mold apart to get to the finished piece. Hot glue guns are basically handheld thermoplastic extruders, so when [scorch] dug up some old injection molds he had sitting around, it didn’t take long to put two and two together.

Injection molds aren’t something any normal person has sitting around, but a few years ago [scorch] found two books published by Gingery, the same people who have published instructions on how to build a metalshop from scrap. [scorch] created his molds on a small CNC mill – a Sieg X3 – and his initial experiments with injection molded plastic were fairly successful, even if the molds were made from self-cast billets.

After molding a few hot glue LEGO parts with his equipment, [scorch] had a look around the Internet and noticed this was nothing new. One company even sells a hot glue gun-based injection molding kit using polyethylene glue sticks. Their demo video (seen below) seems much more complicated than [scorch]’s efforts, so  we’ll say he came out ahead on this one.

Continue reading “Injection Molding With Hot Glue”

Hardware Startup Review: Spark

The Hardware Startup Review - Spark - Hackaday-01

Like it or not, a whole new wave of Hardware Startups is coming our way. Crowd Funding campaigns are making it possible for everyone with an idea to “test the waters”, tech-savvy Angel investors are eager to help successful ones cross over, and Venture Capitalists are sitting on the other side, always on the lookout for potential additions to their “hardware portfolio”. It’s these billion-dollar acquisitions that made everyone jump on the bandwagon, and there’s no going back. At least for now.

That’s all great, and we want to believe that good things will come out of this whole frenzy. But instead of staying on the sidelines, we thought Hackady should get involved and start asking some hard questions. After all, these guys didn’t think they’d be able to get away with some nicely produced videos and a couple of high-res photos, right?

For our first issue, we picked a relatively innocent target – Spark, the team behind the Spark Core development board. By embracing Open Source and Open Hardware as the core part of their strategy, Spark has so far been a positive example in the sea of otherwise dull (and potentially creepy) IoT “platforms”. So we thought we should give [Zach Supalla], CEO of Spark a call.

Continue reading “Hardware Startup Review: Spark”

Intelligent Roadways Pave Way To The Future

smart roadway with illuminated tiles

The idea of a road is relatively simple – a durable path from point A to point B. Development of roadways usable for wheeled carriages has been perfected over the centuries. The Romans, for instance, used a base layer of crushed limestone that would let water flow out, preventing clay soil from turning into mud. Some Roman roads were topped with six sided capstones, also known as pavers, many of which still exist today.

The invention of the horseless carriage necessitated roadways that could be used at high speeds. Tarmac, asphalt and concrete roads followed, and thus ends our short venture into the history of roads. Roadways simply haven’t changed much since then. Sure, we’ve painted some lines on them, even etched grooves in some to prevent accidents, but the core technology of the road is the same as it was a hundred years ago. Until now. Consider the Intelligent Roadway.

[Scott] is an electrical engineer, and had dreamed of solar powered roadways as a child. But it wasn’t until the realization of global warming did [Scott] and his wife, [Julie] start to take the concept seriously. Stick around after the break to find out just how smart [Scott’s] roadway of the future is.

Continue reading “Intelligent Roadways Pave Way To The Future”

Repairing A Damaged RC Rx Due To Reverse Polarity Power Input

Rx Receiver Repair

Once in a while all of us technocenti get a little complacent and do something that may be considered ‘dumb’ while working on a project…. like cutting the wrong side of a piece of wood or welding a bracket on in the wrong direction. [Santhosh] is human like everyone else and plugged in the power connector to his RC Receiver incorrectly, rendering the receiver useless. How will his Arduino-controlled Robot work without a functioning receiver?

[Santhosh] started by opening up the case to expose the circuit board and checking out the components inside. The first component in the power input path was a voltage regulator. Five volts DC was applied to the input side of the 3.3-volt regulator but only 1.21 came out the other end. Now that the problem was quickly identified the next step was to replace the faulty regulator. Purchasing an exact replacement would have been easy but cost both time and money. [Santhosh]’s parts bin contained a similar regulator, a little larger than the original but the pinout was the same.

Continue reading “Repairing A Damaged RC Rx Due To Reverse Polarity Power Input”

Not Your Average Power Supply Hack

Not Your Typical ATX Power Supply Hack

Power supplies are essential for at home tinkering and electronics hacking. Unfortunately, they’re really quite expensive, and a bit out of reach for most hobbyists. Computer ATX power supplies are a cheap alternative, although they usually tend to lack the features of real bench power supplies… unless you hack yours like [Mark Schoonover]!

When [Mark] set out on this project he wanted to use as many recycled components as possible, but still come up with an extremely functional bench top power supply. He snagged a 500W ATX power supply from one of his kid’s old desktop PC’s, grabbed some old wall-warts for individual current limited supplies (apparently ATX PSU’s don’t have 5V rails anymore?), and put it all into a nice big project box.

He’s even thrown in a voltage regulator with current metering and a nice set of 7-segment displays!

Continue reading “Not Your Typical ATX Power Supply Hack”

Black Knight Transformer — A Military Octorotor You Can Ride In

fig3-sm

We saw this pop up a few times before and to be honest, we weren’t sure if it was actually real or not. This is the Advanced Tactics Black Knight Transformer — the world’s first VTOL (vertical take off and landing) aircraft that also doubles as an off-road vehicle.

Designed and built in California, it just received government approval and Advanced Tactics has released the first driving and flight test video. It was apparently designed as a rapid-response evacuation vehicle for wounded soldiers in war affected zones. It features a whopping eight individually driven rotors that swing out on “transforming” arms during flight. It also has a removable ground drive-train which can be swapped out for an amphibious boat hull, or even a cargo pod!

At the forefront of large-scale multicopter design and manufacturing, we poked around Advanced Tactic’s website a bit and found another one of their projects, the Transformer Panther sUAS — a miniature version of the Black Knight, designed as a small unmanned aircraft system that is also capable of land and sea use.

Stick around after the break to see them in action — and let us know what you think!

Continue reading “Black Knight Transformer — A Military Octorotor You Can Ride In”

Custom Nixie Tube PSU Is A Lesson In Good PCB Design

Nixie HVPSU

[Jan Rychter] was sick and tired of not being able to find the right power supply for his Nixie tube projects, so he decided to design his own. [Jan] started out designing around the MAX1771 (PDF) DC-DC controller, but quickly discovered he was having stability problems. Even after seven board revisions, he was still experiencing uncontrolled behavior. He ended up abandoning the MAX1171 and switching to the Texas Instruments TPS40210. After three more board designs, he finally has something that works for him. [Jan] admits that his design is likely not perfect (could have fooled us!), but he wanted to release it to the world as Open-Source Hardware to give back to the community.

The end result of [Jan’s] hard work is a 5cm x 5cm board that generates four separate output voltages from a single 12V source. These include both a 3.3V and 5V output for digital logic as well as a 220V out put for Nixie tubes and a 440V maximum output for dekatrons. The circuit also features several safety features including over-current protection, thermal shutdown, and slow-start. Be sure to check out [Jan’s] webpage to view out the schematics and technical information for this awesome circuit.

Need some Nixie tubes to go with that circuit? We know some resources for you to check out. Or you could always just build your own. How can you use this board in your next project?