Johnny Mnemonic, Broken Columns, And Pinball Repair

johnny

[Quinn Dunki] has come to realize the pinball machines of her youth aren’t the lame games she remembered. They’re actually quite marvelous in terms of electronics, mechanics, engineering and the all important hackability. Wanting to pick up a 90s dot matrix display pinball machine and being a [William Gibson] fan, [Quinn] picked up an old Johnny Mnemonic machine. She’s already looked into replacing the incandescent bulbs with LEDs, and has just wrapped up troubleshooting a broken plasma dot matrix display.

dotsThe neon dot matrix displays in pinball machines of this era are finicky devices with a lot of stuff that can go wrong. On powering the display up, [Quinn] noticed a few columns on the left side of the display weren’t working. These machines have great diagnostic menus, so running a test that displays a single column at a time revealed two broken columns. However, when a solid fill test was run, all the columns work, save for a few dots in the upper left corner. This is an odd problem to troubleshoot, but after more tests [Quinn] realized dots in column five and six only work iff both adjacent dots in the same row are lit.

The power supply seemed okay, leaving the problem to either a logic problem, or something wrong in the glass. With a meter, [Quinn] deduced there was a short between the two broken columns, and tracing every thing out revealed a problem in the hermetically sealed display filled with noble gasses. A replacement display was ordered.

While [Quinn] was replacing the display, she decided it would be a good time to rehab the almost-but-not-quite out of spec driver board for the display. The power resistors had scorched the PCB, but didn’t damage any traces. Replacing the parts with modern components with a higher power rating brought the board back to spec with components that should last longer than the 20-year-old parts previously inhabiting the driver board.

It was a lot of effort, but now [Quinn] has a brand new display for her pinball machine and is ready to move on to the next phase of her restoration.

Hacking The D-Link DSP-W215 Smart Plug

DSP-W215

The D-Link DSP-W215 Smart Plug, a wireless home automation device for monitoring and controlling electrical outlets has just been hacked. Even though it isn’t readily available from Amazon or Best Buy yet, the firmware is already up on D-Link’s web site. The very well detailed write-up explains all the steps that led to this exploit creation.

First, the firmware was unpacked to examine the file system contents. It was found that the smart plug doesn’t have a normal web-based interface as users are expected to configure it using D-Link’s Android/iOS app. The apps however, appear to use the Home Network Administration Protocol (HNAP) to talk to the smart plug running a lighthttpd server. A look at the latter’s configuration file revealed the functions that could be called without any authentication. Another revealed that the firmware could accept an unlimited amount of POST request bytes which were copied in a fix length buffer without any performed checks. We’ll let our readers head to the original article to see where the author went from this point.

LED Snowboards Light Up The Night

night time snowboarding

Snowboarding at night is awesome — but unless your riding on a well-lit ski slope you’re not going to have much luck free-styling through the mountains — unless of course you’ve got a board equipped with floodlights!

The folks over at Signal Snowboards do tons of cool snowboard mods, like making a snowboard completely out of paper, making a heated board to melt the snow as you go, making a bullet proof snowboard… the list goes on. Eager to make use of the dwindling 2014 boarding season, they decided to make the Floodlight Snowboard, a board equipped with LED lights on all sides that makes for amazing nighttime riding — and really cool video and photo effects!

A company donated a ton of LED headlights and flashlights to them and they got to work. While it’s technically as simple as strapping a flashlight to the board, since they actually manufacture boards, they’ve gone ahead and fully integrated the lights right into design. It’s quite cool to see the full process in their shop!

Continue reading “LED Snowboards Light Up The Night”

Breaking Open The Quirky Nimbus

Nimbus

The Nimbus is a little Internet-connected device put out by a company called Quirky. It features four analog dials, each with graphic LCDs, with WiFi connectivity to show you how many tweets you’ve made in the past day. You know, in case you forgot, or something.

[Edu] didn’t find the social media-oriented Nimbus very useful, but Internet connected analog gauges are just so cool, so out came the screwdriver and the writing of new firmware commenced.

Inside the Nimbus there’s an SPI Flash, PIC micro, and an Electric Imp, a tiny ARM microcontroller and WiFi adapter stuffed inside an SD card. The Imp is always tied to a cloud service, in this case, a Quirky-lined cloud, but the folks at Quirky were keen to help [Edu] in his quest for better firmware.

After figuring out all the traces, [Edu] wrote a simple firmware that can control everything there is to control – the dials, displays, two buttons, and a speaker. So far he’s put some graphics on the display and PWM’d the theme from Monkey Island. This is just scratching the surface of what the device can do – [Edu] can still make use of the WiFi connectivity, and those dials can do much more than spin around in circles.

Monkey Island video below.

Continue reading “Breaking Open The Quirky Nimbus”

World’s Smallest Comic Etched Onto A Human Hair

world's smallest comic

[Sébastien Bourdeauducq] had the idea to create the world’s smallest comic — so he assembled a team and was able to produce a comic strip where each panel is <20um across, etched on a human hair.

They used focused ion beam (FIB) etching, where a high-speed jet of matter is generated and blasted at a hair to etch the comic. Think of it kind of like a super focused laser beam. Check out the original microscopic imagery of it over on their GitHub.

The cool thing is they really just did this for fun — it’s purpose is to advertise the EHSM conference in Hamburg. The Exceptionally Hard(ware) & Soft(ware) Meeting is a massive gathering of the opensource and DIY hacking world. If you happen to live in Europe we’d recommend checking it out — just take a look at their conference talks they have lined up! The Maker Movement Meets Patent Law, Optics & Photonics with Lego Bricks, the Basics of Quantum Cryptograhy, the Principles of Mass Spectrometry… the list goes on!

Continue reading “World’s Smallest Comic Etched Onto A Human Hair”

Augmented Reality With An FPGA

 

bruceinabox

 

[Julie Wang] has created an augmented reality system on a Field Programmable Gate Array (FPGA). Augmented reality is nothing new – heck, these days even your tablet can do it. [Julie] has taken a slightly different approach though. She’s not using a processor at all. Her entire system, from capture, to image processing, to VGA signal output, is all instantiated in a FPGA.

Using the system is as simple as holding up a green square of cardboard. Viewing the world through an old camcorder, [Julie’s] project detects and tracks the green square. It then adds a 3D image of Cornell’s McGraw Tower on top of the green. The tower moves with the cardboard, appearing to be there. [Julie] injected a bit of humor into the project through the option of substituting the tower for an image of her professor, [Bruce Land].

[Julie] started with an NTSC video signal. The video is captured by a DE2-115 board with an Altera Cyclone IV FPGA. Once the signal was inside the FPGA, [Julie’s] code performs a median filter. A color detector finds an area of green pixels which are passed to a corner follower and corner median filter. The tower or Bruce images are loaded from ROM and overlaid on the video stream, which is then output via VGA.

The amazing part is that there is no microprocessor involved in any of the processing. Logic and state machines control the show. Great work [Julie], we hope [Bruce] gives you an A!

Continue reading “Augmented Reality With An FPGA”