Developed On Hackaday: Let’s Build Some Hardware!

We’re pretty sure that most of you already know that a few months ago Hackaday was bought by SupplyFrame, who therefore became our new evil overlords. We do hope you’ve noticed that they’re actually quite nice, and in their divine goodness they recently gave the go-ahead on this series called Developed on Hackaday.

A new project will be made by the Hackaday staff & community and will hopefully be brought to the consumer market. For those who don’t have the time/experience to get involved in this adventure, we want to show and document what it takes to bring an idea to the marketable product stage. For the others, we would like to involve you in the design/development process as much as possible. Obviously, this project will be open source hardware/software. This time around, the hardware will mainly be developed by yours truly. You may already know me from the whistled platform (currently sold on Tindie) or from all the different projects described on my website, which makes this new adventure far from being my first rodeo.

What’s in it for the contributors? During all the steps of this project, we’ll offer many rewards as well as hand-soldered first prototypes of the device so you can start playing/testing it. Nothing is set in stone so every suggestion is welcome. Should we make a Kickstarter-like campaign to manufacture the final product, we’ll only do so once our prototype is final, our partners are chosen and all details of the production process are set and confirmed. In that case, we will just need to gather the required funds to make the device a reality. What are we going to build? Keep reading to find out.

Continue reading “Developed On Hackaday: Let’s Build Some Hardware!”

The Sub-$500 Deltaprintr

delta

We’ve seen them before, but only now has the Deltaprinter, a very simple and affordable delta printer finally hit Kickstarter.

We saw the Deltaprintr at the World Maker Faire last September where the team showed off their fancy new printer and the very nice prints it can produce. The printer itself is unique in that it eschews printed parts and is instead made of lasercut parts. Instead of belts, each arm of the delta bot is lifted with spectra line, and the entire mechanism is billed as not requiring calibration probably due to the accurate laser cut parts.

On a completely different note, we did notice the rewards for the Deltaprintr Kickstarter are limited. Unlike the gobs of 3D printers on Kickstarter, the Deltaprintr team actually wants to stay on schedule for their shipping dates. That’s an admirable dedication to getting their printer out to backers in a reasonable amount of time.

Trimming The Fat From AVR GCC

avr

[Ralph] has been working on an extraordinarily tiny bootloader for the ATtiny85, and although coding in assembly does have some merits in this regard, writing in C and using AVR Libc is so much more convenient. Through his trials of slimming down pieces of code to the bare minimum, he’s found a few ways to easily trim a few bytes off code compiled with AVR-GCC.

To test his ideas out, [Ralph] first coded up a short program that reads the ATtiny85’s internal temperature sensor. Dissassembling the code, he found the a jump to a function called __ctors_end: before the jump to main. According to the ATtiny85 datasheet, this call sets the IO registers to their initial values. These initial values are 0, so that’s 16 bytes that can be saved. This function also sets the stack pointer to its initial value, so another 16 bytes can be optimized out.

If you’re not using interrupts on an ATtiny, you can get rid of 30 bytes of code by getting rid of the interrupt vector table. In the end, [Ralph] was able to take a 274 byte program and trim it down to 190 bytes. Compared to the 8k of Flash on the ‘tiny85, it’s a small amount saved, but if you’re banging your head against the limitations of this micro’s storage, this might be a good place to start.

Now if you want to hear some stories about optimizing code you’ve got to check out the Once Upon Atari documentary. They spent months hand optimizing code to make it fit on the cartridges.

Android And Arduino RF Outlet Selector

ardAndRFoutlets

Cyber Monday may be behind us, but there are always some hackable, inexpensive electronics to be had. [Stephen’s] wireless Android/Arduino outlet hack may be the perfect holiday project on the cheap, especially considering you can once again snag the right remote controlled outlets from Home Depot. This project is similar to other remote control outlet builds we’ve seen here, but for around $6 per outlet: a tough price to beat.

[Stephen] Frankenstein’d an inexpensive RF device from Amazon into his build, hooking the Arduino up to the 4 pins on the transmitter. The first step was to reverse engineer the communication for the outlet, which was accomplished through some down and dirty Arduino logic analyzing. The final circuit included a standard Arduino Ethernet shield, which [Stephen] hooked up to his router and configured to run as a web server. Most of the code was borrowed from the RC-Switch outlet project, but the protocols from that build are based on US standards and did not quite fit [Stephen’s] needs, so he turned to a similar Instructables project to work out the finer details.

Stick around after the break for a quick video demonstration, then check out another wireless outlet hack for inspiration.

Continue reading “Android And Arduino RF Outlet Selector”

Turning A Pi Into An IBeacon

beacon

Nowadays, if you want to ‘check in with Foursquare’ at your local laundromat, deli, or gas station, you need to take out your phone and manually ‘check in with Foursquare’. It’s like we’re living in the stone age. iBeacon, Apple’s NFC competitor that operates over Bluetooth 4.0 changes all that. iBeacon can automatically notify both iOS and Android users of where they are. [Kevin Townsend] over at Adafruit came up with a tutorial that turns a Raspberry Pi into an iBeacon, perfect for telling you that you’re somewhere in the proximity of a Raspberry Pi, and some other cool stuff too.

The iBeacon protocol is actually very simple. Basically, the only thing the iBeacon transmits is a 128-bit company/entity value, and an optional major and minor values (to differentiate between locations and nodes within locations, respectively). After plugging in a Bluetooth 4.0 USB dongle into the Pi, it’s a simple matter of installing BlueZ and entering the iBeacon data.

iBeacon by itself doesn’t really do anything – the heavy lifting of figuring out exactly which Panera Bread or Starbucks you’re in is left to the apps on your phone. If you’re a mobile developer, though, this is a great way to set up a very useful testing rig.

Instant Inkjet Circuits With Silver Nanoparticle Ink

Researchers at the University of Tokyo, Georgia Tech and a team from Microsoft Research have developed a low-cost method of printing circuits using an ordinary inkjet printer using a technique called Instant Inkjet Circuits.

The hack is quite literally as simple as injecting a refillable printer cartridge with a commercially available Silver Nano-particle Ink. This allows the printing of circuits onto many different flexible substrates including paper, transparent film, or basically anything you can fit in the printer. Typically if the medium is designed for printing it will work. Some exceptions to this include canvas cloth, magnetic sheets, and transfer sheets.

The researchers chose a Brother inkjet printer because they typically have nozzles that eject higher volumes of ink than other printers. The exact model they used was the Brother DCP-J140w. To maximize ink deposition, all cartridges are filled with the ink, and printed using photo mode where the C M and Y cartridges are simultaneously used to create black. No special software is required to print.

The full article is well worth the read and shows many examples of the different applications this could be used for — including instant prototyping using nothing but scotch tape.

If anyone can source some of this ink and try it out we would love to hear from you! Those that can’t may want to give the old inkjet/laser toner etch resist trick a try.

[via Power Electronics]

AVR Atmega Based PID Magnetic Levitator

[Davide] saw our recent post on magnetic levitation and quickly sent in his own project, which has a great explanation of how it works — he’s also included the code to try yourself!

His setup uses an Atmega8 micro-controller which controls a small 12V 50N coil using pulse-width-modulation (PWM). A hall effect sensor (Allegro A1302) mounted inside the coil detects the distance to the magnet and that data is used by a PID controller to automatically adjust the PWM of the coil to keep the magnet in place. The Atmega8 runs at 8Mhz and the hall effect sensor is polled every 1ms to provide an updated value for the PWM. He’s also thrown in an RGB LED that lights up when an object is being levitated!

So why is there a kid with a floating balloon? [Davide] actually built the setup for his friend [Paolo] to display at an art fair called InverART 2013!

After the break check out the circuit diagram and a short demonstration video of the device in action!

Oh yeah, those of you not impressed by magnetic levitation will probably appreciate acoustic levitation.

Continue reading “AVR Atmega Based PID Magnetic Levitator”