Volt Meter Clock Also Displays The Temperature

[IronJungle] got around to putting together every tinkerers favorite project: a clock with a strange way of displaying the time. For his clock, [Jungle] took a trio of voltmeters and turned them into a clock that displays the current hour, minute, and second on custom paper dials.

[IronJungle] connected a PIC 14M2 microcontroller to a DS1307 real time clock to keep track of the current time. As for display, [Jungle] took a trio of volt meters and wired them in to the PWM outputs on his PIC. With this, he was able to precisely control the position of the needle in the meter, and thus display the time.

In addition to displaying the time, [IronJungle] added a small temperature sensor to his build. By pressing a button below the seconds display, the clock is able to display the current temperature in Fahrenheit, Celsius, and Kelvin.

After the break you can check out a time-lapse video of [IronJungle]’s voltmeter clock going through the hours.

Continue reading “Volt Meter Clock Also Displays The Temperature”

The $100 Tri-copter

We’ve seen lots of budget tri-copters, but $100 seems like a heck of a deal to us! Watching this video, you can see this home made tri-copter is incredibly agile and seems to handle quite well. Whats amazing is that [hallstudio] claims that it cost roughly $100. That price is really good compared to even the cheapest multi copters out there.

Much of the manufacturing cost associated with this kind of thing has been removed as the body is just cheap wood from the local hardware store. He even did an admittedly sloppy rig for his tail rotor, not that it looks like it has hurt his performance.  One cool feature is the fact that you can fold the front arms backward, allowing for the tri-copter to be shoved into a bag for easy transportation.

You can find a complete parts list on his video, but it looks like maybe his cost doesn’t figure in the cost of the radio controller. There are no build instructions, but a quick google search leads us to the rcexplorer tricopter which seems to be the template he used. There are full build details there.

 

[via Hackedgadgets]

10bitworks Shows Us How To Light Up A Synchronized Swarm Of LED Jellyfish

10bitworks-led-tshirts

[Jeremy Zunker] from 10bitworks recently wrote in to share a cool build the group put together for the Luminaria 2012 festival which took place in March of this year. As you might have guessed, the fest is home to a wide array of light-themed projects, so the team at 10bitworks thought long and hard to come up with a design which would help them stand out from the other 79 featured artists.

At the core of their project is a t-shirt which features a deep-sea diver surrounded by swarm of jellyfish. Each of the jellyfish is backlit by an LED module, allowing the group to create intricate light patterns on the shirt.

10bitworks brought 8 shirts to the show, each fitted with a small control pack that contained a set of batteries and a Jeenode wireless board. A ninth Jeenode and a large antenna were used as the master control unit, sending signals to each of the t-shirts in order to synchronize the light display.

The final result turned out very nicely as you can see in the video below, where [Jeremy] walks through all of the project’s finer details.

Continue reading “10bitworks Shows Us How To Light Up A Synchronized Swarm Of LED Jellyfish”

Extending The Range Of The AR Drone, 2 Ways.

As I mentioned earlier, we’ve got an AR Drone to play with. One of the common mods that popped up on the internet were ways of extending the range on the AR Drone. It normally uses a local Wi-Fi connection to your phone or tablet for control and video signals. Many found this quite restrictive and have gone pretty far in extending that range.

The first and easiest was just to set up a higher power Wi-Fi Bridge where you’ll be flying. The Drone only has about 15db of wi-fi magic in it, so anything stronger than that is an improvement. There were too many variations on this to delve into the details, but as you see, there’s not much too it.

Continue reading “Extending The Range Of The AR Drone, 2 Ways.”

Playing With DSP And Building A Guitar Pedal

Building guitar pedals has come a long way from hooking up a few transistors and building a simple boost circuit. [Cloudscapes] has been working on a Anti-nautilus auto glitch, auto repeat pedal, and if you’re looking for something that sounds like a spaghetti western soundtrack skipping on a record player, we couldn’t think of anything better.

[Cloudscapes] was already familiar with 8-bit AVRs, but when doing real-time audio sampling, a more powerful microcontroller was in order. He turned to the MikroElektronika MINI-32 board for development purposes. This small board fits a PIC32 microcontroller into an easily breadboardable DIP-40 form factor, perfect for playing around with some very capable hardware.

For the DAC, [Cloudscapes] had some experience with the 16-bit PT8211, but finding a good 16-bit ADC in a convenient package was a bit of a challenge. He eventually settled on the 12-bit MCP3201 ADC, more than enough for a pedal that is supposed to sound lo-fi.

After [Cloudscapes] got a few boards made, he started on his DSP adventure. Unfortunately, the initial code used unsigned 16-bit words to represent each sample, meaning every time the loop repeated it would start at 0 and produce a short pop in the speaker. After a week of debugging, [Cloudscapes] realized signed integers are a much better data format for storing audio data and got rid of the problems plaguing his project.

Now [Cloudscapes] has a wonderful DSP dev board, perfect for making new and strange guitar effects. After the break you can listen to a demo of what the Anti-nautilus pedal actually does, and we’ve got to say it sounds great.

Thanks [Chris] for sending this one in.

Continue reading “Playing With DSP And Building A Guitar Pedal”

Hackaday Retro Edition Roundup

In case you’ve forgotten about it, we still have a retro edition of Hackaday. It’s our simple, hand-coded HTML site featuring a few random hacks from Hackaday’s 8-year history. There’s also a retro successes page where our readers can log on with their old boxxen and claim their prize as a master of retrocomputing. Here’s a few retro successes that came in over the past month or so:

Our second OS/2 Warp submission comes from [Chris]. He got an HP Omnibook 800CT running OS/2 Warp 4 to load up our retro site.

A few of you may be wondering what the upper bound of what we consider a retro computer is. [Witek] used a Wyse thin client from the year 2000 to pull up our retro edition. These terrible computers used a Compact Flash card plugged directly into an IDE port to load up Windows CE. Yeah, it’s technically a SSD. [Witek] put the GRUB bootloader on one and loaded up our retro edition with Debian Squeeze. We have too many bad memories of these thin clients, and we’ve got to commend [Witek] for putting the effort into doing something useful with one.

[leadacid] is on a roll. He gave us our first OS/2 Warp submission and has since moved onto an IBM RS/6000. Previously, he got a Macintosh 8100 and a Quadra 840AV to pull up the retro site. Nice job.

Those are all the retro submissions for now, but if you have an old computer lying around, try pulling up our retro site and send it in.

Sadly, You Can’t Buy This Hoverbike

The LA Times posted a story about a company called Aerofex that built a real-life hover bike very reminiscent of the vehicles embedded in the redwoods of the forest moon of Endor.

The bike itself is a pair of ducted fans, with the pilot straddling the craft amidship. Aerofex claims the ducts on their hoverbike prevent the recirculating flow of air that causes dust or snow to completely obscure a helicopter pilot’s vision when landing.

From the Times’ article, Aerofex doesn’t have any plans to make this hoverbike commercially available and is instead meant to be a concept vehicle for future UAVs.

On the Aerofex blog, there’s a ton of videos showing off the capabilities of this bike. From what we can gather, it doesn’t seem like this hoverbike can climb higher than a few inches off the ground, so it’s of questionable utility when not flying around a dry lake bed.

Surprisingly, Aerofex says their bike doesn’t require any artificial stabilization or software; it’s controlled by the pilot leaning front to back and side to side. We’ll take that as an indication this hoverbike may be easy for someone to build in a garage, and we’ll be sure to post the first Aerofex hoverbike clone that shows up on our tip line.

You can check out a video of the hoverbike in action after the break.

Continue reading “Sadly, You Can’t Buy This Hoverbike”