A Simple And Effective 3D Filament Splicer

There are times in every 3D print enthusiast’s life when it would be convenient to join two pieces of filament. The problem with simply melting them together is that the resulting join has a blob of plastic surrounding it which has difficulty making it through the printer’s internals. [Pete Prodoehl] has a solution, in the form of a well-executed splicing jig that’s sure to leave a join which will glide through your printer.

The trick lies in performing the join in a space only marginally wider than the filament width, in the case of 1.75 mm filament a short piece of 1.775 mm PTFE tube encased in a 3D printed clamp. A 90-degree cut piece of filament is fed through the tube and heated with a candle, then withdrawn into the tube where a 45-degree cut piece is pushed in to fuse with it. The result is a seamless and bulge-less join, that can pass through an extruder without issue and print continuous pieces from different filaments.

It’s a very effective technique, but it’s not the only one we’ve seen over the years. This one by comparison heats the filament in a hair straightener, and relies on gently pulling the join apart as it solidifies in order to reduce the bulge.

Simple Hack Lets Smartphone Take Resin Printer Time-Lapses

With how cheap they’re getting, everyone seems to be jumping on the resin printer bandwagon. They may not be able to fully replace your trusty old FDM printer, but for certain jobs, they just can’t be beaten. Sadly though, creating those smooth time-lapse videos of your prints isn’t quite as easy to do as it is on their filament-based counterparts.

Not as easy, perhaps, but not impossible. [Fraens] found a way to make time-lapses on any resin printer, and in a wonderfully hacky way. First, you need to find a smartphone, which shouldn’t be too hard, given how often we all tend to upgrade. [Fraens] recommends replacing the standard camera app on the phone with Open Camera, to prevent it from closing during the long intervals with nothing happening. The camera is triggered by any readily available Bluetooth dongle, which is connected via a simple transistor circuit to an Arduino output. To trigger the shutter, a light-dependent resistor (LDR) is connected to one of the microcontroller’s inputs. The LDR is placed inside the bed of the resin printer — an Anycubic Photon in this case — where light from the UV panel used to cross-link the resin can fall on it. A simple bit of Arduino code triggers the Bluetooth dongle at the right moment, capturing a series of stills which are later stitched together using DaVinci Resolve.

The short video below shows the results, which look pretty good to us. There are other ways to do this, of course, but we find the simplicity of this method pleasing.

Continue reading “Simple Hack Lets Smartphone Take Resin Printer Time-Lapses”

3D Printing On A Spinning Rod

FDM 3D printing traditionally operates on a layer-by-layer basis, using a flat bed to construct parts. However, [Humphrey Wittingtonsworth IV] demonstrates in his video how this process can be significantly enhanced in terms of mechanical strength and print speed by experimenting with printing on a rotating rod instead of the standard flat bed.

[Humphrey] modified a Creality CR-10 3D printer by removing the bed and installing a regular 8mm linear rod under the hotend. The rod is rotated by a stepper motor with a 3:1 belt drive. This lets him use the rod as the printing surface, laying down layers axially along the length of an object. This means parts that can stand up to bending forces much better than their upright-printed counterparts.

Additionally, this rotational action allows for printing functional coil and wave springs – even multi-layer ones – something that’s not exactly feasible with your run-of-the-mill printer. It can also create super smooth and precise threads as the print head follows their path. As an added bonus – it could also speed up your printing process as you’re just spinning a slim rod instead of slinging around an entire bed. So cylindrical parts like tubes and discs could be printed almost as quickly as your hotend can melt filament.

Of course, this approach isn’t without its challenges. It works best for cylindrical components and there’s a limit to how small you can go with inner diameters based on your chosen rod size. Then there’s also the task of freeing your prints from their rod once they’re finished. [Humphrey] addressed this by creating mesh sleeves that snugly fit over his center rod. This limits how much melted plastic can adhere to it, making removal a breeze.

Continue reading “3D Printing On A Spinning Rod”

CPU Cooler In A Printer’s Hot End

[Proper Printing] often does unusual 3D printer mods. This time, he’s taking a CPU cooler made for a Raspberry Pi with some heat pipes and converting it into a 3D printer hot end. Sound crazy? It is even crazier than it sounds, as seen in the video below.

Heat pipes contain a liquid and a wick, so bending them was tricky. It also limited the size of the heat break he could use since the two heat pipers were relatively closely spaced. Once you have the cooler reshaped and a threaded hole for the heatbreak, the rest is anticlimactic. The heatbreak holds a heat block that contains the heating element and temperature sensor. A few changes were needed to the custom extruder cut out of acrylic, but that didn’t have anything to do with the fan and mount.

Normally, a hot end assembly has a substantial heat sink, and a fan blows air over it. The heat pipe technique is a common way to move heat away from a tight space. So, the way it is used here is probably not very useful compared to a conventional technique. However, we can imagine tight designs where this would be viable.

Heat pipes aren’t the same as water cooling, even though some use water inside. A heat pipe is a closed system. The fluid boils off at the hot end, condenses at the cool end, and wicks the liquid back to close the cycle. On the other hand, you can use more conventional water cooling, too.

Continue reading “CPU Cooler In A Printer’s Hot End”

A workbench with a 3D printer, a home-made frame of metal tubing and 3D printed brackets and phone holders. 3 iOS devices and 1 Android phone arranged around the printer with a clock and 3 different camera angles around the print bed

Even 3D Printers Are Taking Selfies Now

We love watching 3D prints magically grow, through the power of timelapse videos. These are easier to make than ever, due in no small part to a vibrant community that’s continuously refining tools such as Octolapse. Most people are using some camera they can connect to a Raspberry Pi, namely a USB webcam or CSI camera module. A DSLR would arguably take better pictures, but they can be difficult to control, and their high resolution images are tougher for the Pi to encode.

If you’re anything like us, you’ve got a box or drawer full of devices that can take nearly as high-quality images as a DSLR, some cast-off mobile phones. Oh, that pile of “solutions looking for a problem” may have just found one! [Matt@JemRise] sure has, and in the video after the break, you can see how not one but four mobile phones are put to work.

Continue reading “Even 3D Printers Are Taking Selfies Now”

Micromanipulator Touches The Tiny Things, Cheaply

Some things are small and fragile enough that they cannot be held or touched by even the steadiest of hands. Such cases call for a micromanipulator, and [BYU CMR]’s DIY micromanipulator design can be 3D printed and assembled with the help of some common hardware, and a little CA glue.

You may recall an ultra-tiny Nerf-like blaster recently; clearly such a tiny mechanical device cannot be handled directly, yet needed to be loaded and have its trigger pressed. A micromanipulator is exactly the tool for such a job. This design is in fact the very same one used to move and manipulate that tiny blaster at a microscopic level.

The design doesn’t include any end effectors — those depend on one’s application — but there is a mount point for them and the manipulator can effectively move it in X, Y, and Z axes by turning three different knobs. In addition, because the structural parts can be 3D printed and the hardware is just some common nuts and screws, it’s remarkably economical which is always a welcome thing for a workshop.

Marionette 3D Printer Replaces Linear Rails With String

In the early days of FDM 3D printing, the RepRap project spawned all sorts of weird and and wonderful designs. In the video after the break [dizekat] gives us a throwback to those times with the Marionette 3D printer, completely forgoing linear rails in favor of strings.

The closest thing to a linear guide found on the Marionette is a pane of glass against which the top surface of the print head slides. A pair of stepper motors drive the printhead in the XY-plane, similar in concept to the Maslow CNC router, but in this case two more strings are required to keep the mechanism in tension. To correctly adjust the length of the string across the full range of motion, [dizekat] uses a complex articulating pulley mechanism that we haven’t seen before. The strings are also angled slightly downward from the spool to the print head, holding it in place against the glass.

The bed print bed is also suspended and constrained using string, with no rigid mechanical member attaching it to the frame of the printer. Six strings connected to the sides and bottom of the bed frame constrain it in 6-DOF, and pass through another pulley arrangement to three more strings and finally to a single stepper driven belt.

We can’t see any particular advantage to forgoing the linear rails, especially when the mechanisms have to be this complex, but it certainly make for an interesting engineering challenge. Whatever the reason, the end result is fascinating to watch move, and the print quality even looks decent.

Continue reading “Marionette 3D Printer Replaces Linear Rails With String”