Hackaday Prize Entry: 3D Prints For The Visually Impaired

Students with visual impairments can have difficulty with visual and spatial relationships. 3D printers can print almost everything, and with a lot of CAD work, this project in the Hackaday Prize provides these students with physical objects to learn any subject.

[Joan] and [Whosawhatsis] have already written the book on 3D printed science projects and have produced a 3D printed Braille map of a campus, but for this project, they’re making things a little bit simpler. Visually impaired students are tactile learners and the simplest of their 3D printable objects are fixed volume objects. This collection of 3D printable cylinders, cones, prisms, and pyramids give a physical representation of geometric solids. These objects also have another trick up their sleeve: they all contain the same volume. Fill the cylinder up with water, pour that water into a cone, and the student will discover that they all contain the same volume.  That’s useful for the visually impaired, but would also put these printable shapes at home in any elementary or middle school math class.

This project already has a rather large following, with teachers of the visually impaired contributing on a Google Group, and a ton of people downloading the models. [Joan] and [Whosawhatsis] are getting a lot of great feedback and growing the range of contributors, making this the start of an awesome community and a great Hackaday Prize entry.

Monstrous Suit Of Power Armor 3D Printed Over 140 Days

fallout-armour-3d-printed-no-helmet[hirocreations] printed an entire suit of enormous Fallout power armor on his Monoprice Maker Select 3D printer, which took some 140 days and over 120 pounds of IC3D PLA filament. Happily, [hirocreations] was able to arrange a sponsorship with IC3D for the build – who would be crazy enough to use so much filament over so long for an entire 7+ foot tall suit, right? Over those 140 days, the belts on the printer needed to be replaced twice but it otherwise chugged right along.

Most of the parts were printed at 0.46 mm layer height. Individual parts were welded (melted) together using what is essentially a soldering iron with a flat tip; many parts were too thin for any kind of joints or fixtures to be practical. Parts were smoothed with drywall spackle, lots of filler primer, and painted. Some of the parts – like the chest armor – are mounted on a frame made from PVC tubing. [hirocreations] may have gone through 120 pounds of filament, but the end result doesn’t weigh that much; the suit itself weighs in at 85-90 lbs, the rest of it went to support material, skirts, and print failures.

It was known from the start that weight could become a serious issue, so [hirocreations] went for a very light infill (10%) and 3-4 perimeter layers; he also extruded at a high temperature (~230C) which he said seemed to provide a very strong layer bond with the settings and filament he was using. So far, he says it’s taken some very hard knocks and nothing has broken or cracked. He has a short video series documenting the assembly, and you can see some of the raw armor parts before any finishing in one of the videos, embedded below.

Continue reading “Monstrous Suit Of Power Armor 3D Printed Over 140 Days”

Hackaday Prize Entry: A 3D Printed Prosthetic Foot

For the last few years of the Hackaday Prize, there have been more than a few prosthetic devices presented. Almost without exception, the target for these projects are prosthetic hands. That’s a laudable goal, but mechanically, at least, feet are much more interesting. A human foot must sustain more than the weight of the human it’s attached to, and when it comes to making this out of plastic and metal, that means some crazy mechanics.

This Hackaday Prize entry is a complete reversal of all the prosthetic limbs we’ve seen before. It’s a prosthetic foot, and in the tradition of easily made and easily modified prosthetic arms, this prosthetic foot is mostly 3D printed.

A foot will take a lot more abuse and weight than a hand, and because of this 3D printing all the parts might not seem like the best idea. Exotic filaments exist, though, and the team behind this project does have access to a few pieces of test equipment in a materials engineering lab. With the right geometry, everything seems to support the load required.

There are some relatively new twists to this 3D printed prosthetic foot, including electronic control, a micro-hydraulic power plant, and sensors to measure and adjust the user’s gait. It’s all very cool, and deserves a lot more engineering than even the most complicated 3D printed prosthetic hand.

3D Printed Nozzles Turbocharge Microsphere Production

Researchers at MIT have used 3D printing to open the door to low-cost, scalable, and consistent generation of microencapsulated particles, at a fraction of the time and cost usually required. Microencapsulation is the process of encasing particles of one material (a core) within another material (a shell) and has applications in pharmaceuticals, self-healing materials, and dye-based solar cells, among others. But the main problem with the process was that it was that it was slow and didn’t scale, and it was therefore expensive and limited to high-value applications only. With some smart design and stereolithography (SLA) 3D printing, that changed. The researchers are not 3D printing these just because they can; they are printing the arrays because it’s the only way they can be made.

Continue reading “3D Printed Nozzles Turbocharge Microsphere Production”

3D Printed Electric Longboard Courtesy Of Stratasys

[Tallaustin] worked at Stratasys as an intern this past summer. They let him know that he was welcome to use their fancy industrial printers as much as he’d like. Not to waste such an opportunity he promptly got to work and designed an electric longboard, printable for a mere $8,000.

Just in case the idea of a 3D printer that can print a whole longboard was causing envy. Here's a photo of a print delaminating inside of it half way. Just in case the idea of a 3D printer that can print a whole longboard was causing envy. Here's a photo of a print delaminating inside of it half way.
Just in case the idea of a 3D printer that can print a whole longboard was inducing acute envy. Here’s a photo of a print delaminating inside of it half way through.

[Tallaustin] is presumably tall, and confided to Reddit that he weighs in at 210 lbs. For those of us who have had the pleasure of designing for FDM 3D printing, we know that getting a skateboard one can actually skate on without it delaminating somewhere unexpected is pretty difficult if you weigh 80 lbs, 200+  is another category entirely. So it’s not surprising that his first version shattered within in moments of testing.

So, he went back to the drawing board. Since he had his pick of all of Stratasys’s most expensive and fine spools of plastic, he picked one of the expensivest and finest, Ultem 1010. Aside from adding a lot of ribbing and plastic, he also gave it a full rundown with some of SolidWorks’s simulation tools to see if there were any obvious weak points.

Six days of exceedingly expensive printing later, he had a working long board. The base holds some batteries, an ESC, and a 2.4 GHz transceiver. The back has a brushless motor that drives a pulley slotted into one of the wheels. The rest is standard skateboard hardware.

If you’d like to build it yourself he’s posted the design on Thingiverse. He was even nice enough to put together a version that’s printable on a plebeian printer, for a hundredth of the price.

Design And Testing Of The Form 2

Formlabs makes a pretty dang good SLA printer by all accounts. Though a bit premium in the pricing when compared to the more humble impact of FDM printers on the wallet, there’s a bit more to an SLA printer. The reasoning becomes a bit more obvious when reading through this two part series on the design and testing of the Form 2.

It was interesting to see what tests they thought were necessary to ensure the reliable operation of the machine. For example the beam profile of every single laser that goes into a printer is tested to have the correctly shaped spot. We also thought the Talcum powder test was pretty crazy. They left a printer inside a sandblast cabinet and blasted it with Talcum powder to see if dust ingress could cause the printer to fail; it didn’t.

The prototyping section was a good read. Formlabs was praised early on for the professional appearance of their printers. It was interesting to see how they went from a sort of hacky looking monstrosity to the final look. They started by giving each engineer a Form 1 and telling them to modify it in whatever way they thought would produce a better layer separation mechanism. Once they settled on one they liked they figured out how much space they’d need to hold all the new mechanics and electronics. After that it was up to the industrial designer to come up with a look that worked.

They’re promising a third part of the series covering how the feedback from beta testing was directed back into the engineering process. All in all the Form 2 ended up being quite a good printer and the reviews have been positive. The resin from Formlab is a little expensive, but unlike others they still allow users to put the printer in open mode and use other resin if they’d like. It was cool to see their engineering process.