Hack Your Hike With This Arduino Puzzle Geocache

For those who love to hike, no excuse is needed to hit the woods. Other folks, though, need a little coaxing to get into the great outdoors, which is where geocaching comes in: hide something in the woods, post clues to its location online, and they will come. The puzzle is the attraction, and doubly so for this geocache with an Arduino-powered game of Hangman that needs to be solved before the cache is unlocked.

The actual contents of a geocache are rarely the point — after all, it’s the journey, not the destination. But [cliptwings]’ destination is likely to be a real crowd pleaser. Like many geocaches, this one is built into a waterproof plastic ammo can. Inside the can is another door that can only be unlocked by correctly solving a classic game of Hangman. The game itself may look familiar to long-time Hackaday readers, since we featured it back in 2009. Correctly solving the puzzle opens the inner chamber to reveal the geocaching goodness within.

Cleverly, [cliptwings] mounted the volt battery for the Arduino on top of the inner door so that cachers can replace a dead battery and play the game; strangely, the cache entry on Geocaching.com (registration required) does not instruct players to bring a battery along.

It looks like the cache has already been found and solved once since being placed a few days ago in a park north of Tucson, Arizona. Other gadget caches we’ve featured include GPS-enabled reverse caches, and a puzzle cache that requires IR-vision to unlock.

Continue reading “Hack Your Hike With This Arduino Puzzle Geocache”

Flooded house

Honey, When Did We Get An Indoor Pool?

Is it too much to ask for a home to have a little ‘smart’ built-in? If you’ve ever woken up (or come home) to your dwelling being flooded, you’ll know how terrible it feels, how long it can take to recover from, and how stressful it can be. Yeah, it’s happened to us before, so we really feel for [David Schneider]. He woke up one Sunday morning to a whole lot of water in his house. The inlet valve for his washing machine somehow got stuck in the open position after putting a load of laundry in the previous night.

[David] took progressively complex measures to prevent a broken water feed flood from happening in the future. First, he lined the entire floor of his laundry closet with a steel tray. OK, that’s a good start but won’t prevent another disaster unless it is caught very quickly. How about a simple audible water alarm? That’s good and all if you’re home, but what if you’re not?

Next, he installed a valve with a mechanical timer on the water line for the washing machine which closes automatically after 2 hours of being opened. Much better, but what about all the other thirsty appliances around the house? After searching online a little, he found plenty of whole house systems that would work for him, but there were 2 problems with these. First, most were network-based and he didn’t want to IoT-ify his house’s water system. Second, they were overpriced.

Of course the solution was to put together his own system! First, he purchased a few mostly inexpensive things — a wireless alarm, some water sensors, and a motorized ball valve. Then he collected the last few things he needed from what he had on hand around the house, and got to work connecting the 4 LEDs on the alarm to 4 analog input pins on his Arduino. Next, he added a relay between the Arduino and the motorized ball valve.

If a sensor detects water, it tells the alarm about it (wirelessly), which triggers the Arduino to energize a relay that is connected to the motorized ball valve, causing it to shut off the main water line for the entire house. Disaster averted! Sure, it’s a fairly simple hack, but it works, meets his requirements, and now he sleeps better at night knowing he won’t wake up (or come home) to an indoor swimming pool.

It’s surprising that we haven’t seen more hacks like this given it’s such a common problem. The closest thing we can remember is an overflow sensor for an aquarium. If homes came standard with a water main shutoff system, it would remove a stressful event from our lives and maybe even lower our insurance premium.

Portable Bluetooth Speaker Reacts To Sound

[IanMeyer123] should be working on his senior design project. Instead, he’s created a sound-reactive Bluetooth speaker that may not earn him an A grade but will at least keep the team entertained.

[Ian] started with the amp and power. The amp is a 15 watt, 12 volt model based on the popular TDA7297 chip. Power comes from a portable laptop battery rated at 185 Wh. [Ian] himself said that is absolute overkill for this project. While [Ian] hasn’t run any longevity tests on his setup, we’re guesstimating it would be rated in days.

Every Bluetooth speaker needs a sweet light show, right? [Ian] wrapped his 2″ full range speakers in Neopixel rings from Adafriut. The WS2812’s are driven by an Arduino. When music is playing, MSGEQ7 allows the Arduino to play a light show in time to the beat. When the stereo is off, a DS3231 real-time clock module allows the Arduino to display the time on the two rings. If you’re curious about the code for this project, [Ian] posted it on his Reddit thread. Reddit isn’t exactly a great code repository, so please, [Ian] setup a GitHub account, and/or drop your project on Hackaday.io!

[Ian] didn’t realize how many wires would be flying around inside the speaker. That may be why the wiring looks a bit scary. All the chaos is hidden away, underneath a well-built wooden case.

If you want to see another take on a Bluetooth speaker with a Neopixel display, check [Peter’s] project here. Interested in more portable power units? This one’s for you!

Continue reading “Portable Bluetooth Speaker Reacts To Sound”

Vintage Vending Machine Makes The Perfect Gift

Nothing says ‘I Love You’ like an old vending machine, and if it is a restored and working vintage Vendo V-80 cola dispenser then you have yourself a winner. [Jan Cumps] from Belgium was assigned the repair of the device in question by a friend. He started off with just a working refrigerator and no electronics. In a series of repairs, he began with replacing the mechanical coin detector’s switches with optical and magnetic sensors to detect the movement of the coin. These sensors are in turn connected to an Arduino which drives the dispensing motor. The motor itself had to be rewound as part of the repair. Since the project is on a deadline, the whole thing is finished using protoboards and through-hole parts. The final system works by dispensing one frosty bottle every time a coin is inserted.

In contrast to most vending machine repairs, this project was a simple one. Instead of using an off-the-shelf coin detector, a simple LED and photodiode pair brought the hack to life. This could easily be adapted to any machine and even be used to create a DIY vending machine on the cheap.  Continue reading “Vintage Vending Machine Makes The Perfect Gift”

Teensy And 3D Printer Make Beautiful Music Together

[Otermrelik] wanted to experiment with the Teensy audio library and adapter. That, combined with his 3D printer, led to a very cool looking build of the teensypolysynth. The device looks like a little mini soundboard with sliders and 3D printed knobs. You can see (and hear) it in the video below.

The Teensy audio library supports several output devices including several built-in options and external boards like the audio adapter used here. The library does CD-quality sound, supports polyphonic playback, recording, synthesis, mixing, and more.

Continue reading “Teensy And 3D Printer Make Beautiful Music Together”

Sous Vide Arduino Isn’t Lost In Translation

If your idea of a six-course meal is a small order of chicken nuggets, you might have missed the rise of sous vide among cooks. The idea is you seal food in a plastic pouch and then cook it in a water bath that is held at a precise temperature. That temperature is much lower than you usually use, so the cook times are long, but the result is food that is evenly cooked and does not lose much moisture during the cooking process. Of course, controlling a temperature is a perfect job for a microcontroller and [Kasperkors] has made his own setup using an Arduino for control. The post is in Danish, but Google translate is frighteningly good.

The attractive setup uses an Arduino Mega, a display, a waterproof temperature probe, and some odds and ends. The translation does fall down a little on the parts list, but if you substitute “ground” for “earth” and “soil” you should be safe. For the true epicurean, form is as important as function, and [Kasperkors’] acrylic box with LEDs within is certainly eye-catching. You can see a video of the device, below.

Continue reading “Sous Vide Arduino Isn’t Lost In Translation”

Papa Loves Mamba: Slithering Robot Is Reconfigurable

It makes sense considering evolution, but nature comes up with lots of different ways to do things. Consider moving. Land animals walk on four feet or two, some jump, and some use peristalsis or otherwise slither. Oddly, though, mother nature never developed the wheel (although the mother-of-pearl moth’s caterpillar will form its entire body into a hoop and roll away from attackers). Human-developed robots which, on the other hand, most often use wheels. Even a tank track has wheels within. [Joesinstructables] latest robot still uses wheels, but it emulates the slithering motion of a snake, He calls it the Lake Erie Mamba.

The most interesting thing about the robot is that it can reconfigure and move in several different modalities. Like the caterpillar, it can even form a wheel like an ouroboros and roll. You can see that at the end of the video, below.

Continue reading “Papa Loves Mamba: Slithering Robot Is Reconfigurable”