The Trans-Harmonium Is A Strange Kind Of Radio-Musical Instrument

Pianos use little hammers striking taut strings to make tones. The Mellotron used lots of individual tape mechanisms. Meanwhile, the Trans-Harmonium from [Emily Francisco] uses an altogether more curious method of generating sound — each key on this keyboard instrument turns on a functional clock radio.

Electrically, there’s not a whole lot going on. The clock radios have their speaker lines cut, which are then rejoined by pressing their relevant key on the keyboard. As per [Emily]’s instructions for displaying the piece, it’s intended that the radio corresponding to C be tuned in to a local classical station. Keys A, B, D, E, F, and G are then to be tuned to other local stations, while the sharps and flats are to be tuned to the spaces in between, providing a dodgy mix of static and almost-there music and conversation.

It’s an interesting art piece that, no matter how well you play it, will probably not net you a Grammy Award. That would be missing the point, though, as it’s more a piece about “Collecting Fragments of Time,” a broader art project of which this piece is a part.

We do love a good art piece, especially those that repurpose old hardware to great aesthetic achievement.

Continue reading “The Trans-Harmonium Is A Strange Kind Of Radio-Musical Instrument”

LED Art Project Is Geometrically Beautiful

There is no shortage of companies on the Internet willing to sell you expensive glowing things to stick on your walls. Many hackers prefer to make their own however, and [Chris] is no exception. His LED wall art is neat, tidy, and stylish, all at once.

Wanting a geometric design, [Chris] decided to have his layout designed by a random number generator. He created his own tool that would generate a design using preset segment lengths arranged in a random fashion. Once he found a layout that worked for him, he designed a set of plastic adapters that would let him connect pre-cut lengths of aluminium channel together so he could assemble his design.

With the frame complete, he then laid the LED strips into the channels, after mapping out how he would connect the full circuit of addressable LED strips. He enlisted a Raspberry Pi Zero W as the brains of the operation, responsible for commanding the strips to light in the colors of his desire.

In a nice aesthetic touch, he sanded the whole frame and painted it a uniform grey color. This hid the joins between the 3D-printed parts and the aluminium channels, and gave it a more finished look. He also went to the trouble of graphing out the locations of the various LEDs in the frame, and used this data as the basis for animations that race between points on the frame. It’s somehow more compelling than the usual simple color fades and flashes of typical commercial products.

It’s a tidy build, and a level more artful than some of the off-the-shelf products out there. For his investment of time and money, [Chris] has netted an excellent piece of wall art in the process.

SteamPunk Factory Comes To Life With An Arduino

It is one thing to make an artistic steampunk display. But [CapeGeek] added an Arduino to make the display come alive. The display has plenty of tubes and wires. The pressure gauge dominates the display, but there are lots of other interesting bits. Check it out in the video below.

From the creator:

The back-story is a fictional factory that cycles through a multistage process. It starts up with lights and sounds starting in a small tube in one corner, the needle on a big gauge starts rising, then a larger tube at the top lights up in different colors. Finally, the tall, glass reactor vessel lights up to start cooking some process. All this time, as the sequence progresses, it is accompanied by factory motor sounds and bubbling processes. Finally, a loud glass break noise hints that the process has come to a catastrophic end! Then the sequence starts reversing, with lights sequentially shutting down, the needle jumps around randomly, then decreases, finally, all lights are off, indicating the factory shutting down.

Continue reading “SteamPunk Factory Comes To Life With An Arduino”

Intentional Filament Stringing Helps Santa Soar

Stringing is when a 3D printer’s hot end moves through open air and drags a wisp of melted plastic along with it. This is normally undesirable, but has in the past been done intentionally to create some unconventional prints. Moonlight Santa from [3dprintbunny] shows considerable refinement in the technique, complete with color changes that really make the result pop.

Using a 3D printer’s stringing in a constructive way is something that has been leveraged really well. We remember seeing a lion with a fantastic mane by combining this method with a little post-processing and a blast from a heat gun. The technique has also been applied to make brush bristles (the printer strings filament across two handles, and after printing it is cut in half to make two brushes.)

This isn’t [3dprintbunny]’s first rodeo, either. We loved seeing her show what kind of objects were possible by using clever design, with no reliance on custom G-code or weird slicer tricks. The color changes by filament swaps really make this new one stand out.

Making Visual Anagrams, With Help From Machine Learning

[Daniel Geng] and others have an interesting system of generating multi-view optical illusions, or visual anagrams. Such images have more than one “correct” view and visual interpretation.

What’s more, there are quite a few different methods on display: 90 degree flips and other (orthogonal) image rotations, color inversions, jigsaw permutations, and more. The project page has a generous number of examples, so go check them out!

The team’s method uses pre-trained diffusion models — more commonly known as the secret sauce inside image-generating AIs — to evaluate and work to combine the differences between different images, and try to combine and apply it in a way that results in the model generating a good visual result. While conceptually straightforward, this process wasn’t really something that could work without diffusion models driven by modern machine learning techniques.

The visual_anagrams GitHub repository has code and the research paper goes into details on implementation, limitations, and gives guidance on obtaining good results. Image generation is just one of the rapidly-evolving aspects of recent innovations, and it’s always interesting to see unusual applications like this one.

Finally! A Typeface For Hardware People

When it comes to novelty typefaces there is no shortage of weird and wonderful fonts to be found when you have finally tired of Comic Sans. Everything from bananas forming letters to Wild West saloon lettering can be yours, plus of course our favourite, the embossed Dymo label. But there’s a new kid on the novelty typeface block, and for us it sweeps all before it.

Scopin’ Sans is as its creator [Guy Dupont] calls it “A typeface for hardware people”, and its party trick is that it doesn’t produce letters. Instead it forms an oscilloscope trace that displays what it would look like as serial data. Instantly your text jumps straight to 1337, and you win the internet.

We have shamefacedly to admit that we don’t know binary ASCII by sight, so we’ll have to take his word for it. But for the curious there’s a demo from which you can amuse yourself creating traces, and if you can’t recognize serial ASCII then the chances are few of the people around you can either. We take our hats off to [Guy], and it’s something we’re sure we’ll use at some point to delight and confuse our friends. It’s not the first font we’ve brought you, here are some more if you come from the bitmap era.

How Do You Prove An AI Didn’t Make Your Art?

In the world of digital art, distinguishing between AI-generated and human-made creations has become a significant challenge. Almost overnight, tool sets for generating AI artworks became commonly available to the public, and suddenly, every digital art competition had to contend with potential submissions. Some have welcomed AI, while others demand competitors create artworks by their own hand and no other.

The problem facing artists and judges alike is just how to determine whether an artwork was created by a human or an AI. So what can be done?

Continue reading “How Do You Prove An AI Didn’t Make Your Art?”