Building A Kinetic Sand Art Table

Many of us have marveled at art installations that feature marbles quietly and ceaselessly tracing out beautiful patterns in sand. [DIY Machines] is here to show us that it’s entirely possible to build one yourself at home!

The basic mechanism is simple enough. The table uses a Cartesian motion platform to move a magnet underneath a table. On top of the table, a metal sphere attached to the magnet moves through craft sand to draw attractive patterns. An Arduino and Raspberry Pi work together to command the stepper motors to create various patterns in the sand.

Low-cost pine is used to build most of the table, with oak used for the attractive bare wooden top. RGB LEDs surround the sand surface in order to light the scene, with options for mad disco lighting or simple white light for a subtler look. Other nice touches include sitting the craft sand atop a layer of faux leather, so the ball moving through the sand doesn’t make annoying crunching sounds as the ball moves.

It’s a great build that focuses on the smaller details like noise that can make a big difference to the final experience. We’ve seen similar projects before, too. Video after the break.
Continue reading “Building A Kinetic Sand Art Table”

Close up shot of a mechanical sequencer for 555 based synthesizers

Kinetic Synth-Kebab Sculpture Plays Punk Sequentially

What’s better than an Atari Punk Console synthesizer? How about four Atari Punk Console synthesizers. And what better way to present them but as brass wire art sculptures. We’d have forgiven [iSax] if he’d stopped at four brass wire synths, but he took things to another level with his kinetic sculpture that does double duty as a mechanical sequencer. Called the Cyclotone – The Mechanical Punk Console Sequencer, it features wood, brass, brushes, and 555 timers. You can see the demonstration in the video below the break.

If you’re not familiar with the Atari Punk Console, it’s a circuit first described as a “Sound Synthesizer” in Forest Mims’ “Engineer’s Notebook: Integrated Circuit Applications” first published in 1980. It utilized two 555 timers in a single chip, the 556. Later dubbed the “Atari Punk Console”, the circuit has stood the test of time and is still quite popular among hackers of all sorts.

[iSax]’s build adds a sequencing element that allows the synths to be played automatically. The synthesizers are skewered 90 degrees from each other on a square dowel, which is turned at a variable RPM by a stepper motor controlled by a knob at the base of the sculpture.

On either side of each synth is a commutator that contacts salvaged rotary tool brushes which provide power through the hexagonal brass supports. Each synth retains its own speaker and controls and has its own segmented numeral displayed with discrete LED’s that light up when each synth is played.

We applaud [iSax] for a well executed and imaginative build that successfully meshes circuit scultpure, kinetic sculpture, classic electronics and even blinkenlights. If you enjoyed this build, you should also go have a look at a free form Atari Punk Console build and another one built into a joystick. If you come across a project of any kind that catches your fancy, be sure you let us know about it via the Tip Line!

Continue reading “Kinetic Synth-Kebab Sculpture Plays Punk Sequentially”

Exquisite Craftsmanship Elevate Vic’s Creations Above The Rest

This booth was easy to miss at Maker Faire Bay Area 2019 amidst tall professional conference signage erected by adjacent exhibitors. It showcased the work of [Dr. Victor Chaney] who enjoys his day job as a dentist and thus feels no desire to commercialize his inventions — he’s building fun projects for the sake of personal enjoyment which he simply calls Vic’s Creations. Each project is built to his own standards, which are evidently quite high judging by the perfect glossy finish on every custom wood enclosure.

Some of these creations were aligned with his musical interests. The Backpacking Banjo was built around a (well cleaned) cat food can to satisfy the desire for a lightweight instrument he can take camping. His Musical Laser Rainbow Machine (fully documented in Nuts & Volts) was created so little bands formed by independent artists like himself can have a visual light show to go with their live performances. The Music Kaleidoscope is another execution along similar lines, with an LED array whose colors are dictated by music. Venturing outside the world of music, we see a magnetically levitated Castle In The Clouds which also receives power wirelessly to illuminate LEDs

The largest and most complex work on display is an epic electromechanical masterpiece. Par One is a rolling ball sculpture featuring the most convoluted golf course ever. Several more rolling ball sculptures (also called marble machines or marble runs) are on display at Dr. Chaney’s office which must make it the coolest dentist’s lobby ever. The lifelike motions he was able to get from the automatons he built into the sculpture are breathtaking, as you can see below.

Continue reading “Exquisite Craftsmanship Elevate Vic’s Creations Above The Rest”

Lego Tardis Spins Through The Void

Using LEGO Technic gears and rods seems like a great way of bringing animation to your regular LEGO creation. Using gears and crank shafts you can animate models from your favorite TV show or movie like LEGO kinetic sculpture maker, [Josh DaVid] has done when he created a spinning TARDIS.  Crank the handle and the sculpture spins through space and time.

The large gear stays in place. The hidden gears, turned by the crank, rotate a shaft from below that goes through the large gear making the TARDIS rotate around the main axis. Connected to the TARDIS model is a smaller gear, at an angle, that meshes with the larger, stationary, gear. This smaller gear is what causes the TARDIS to rotate around its own axis while the whole thing rotates around the main axis. If your hand gets too tired, you can substitute a LEGO motor.

It’s a neat effect, and you can get the plans [Josh]’s Etsy page. The best part, however, is that you can get a set with all the parts as well! The TARDIS is a popular item here and we’ve had plenty of projects with it as the focus: Everything from a tree topper to sub-woofers. The only question we have, of course, is, ‘Is it bigger on the inside?’

Continue reading “Lego Tardis Spins Through The Void”

Kinetic Sculpture Achieves Balance Through Machine Learning

We all know how important it is to achieve balance in life, or at least so the self-help industry tells us. How exactly to achieve balance is generally left as an exercise to the individual, however, with varying results. But what about our machines? Will there come a day when artificial intelligences and their robotic bodies become so stressed that they too will search for an elusive and ill-defined sense of balance?

We kid, but only a little; who knows what the future field of machine psychology will discover? Until then, this kinetic sculpture that achieves literal balance might hold lessons for human and machine alike. Dubbed In Medio Stat Virtus, or “In the middle stands virtue,” [Astrid Kraniger]’s kinetic sculpture explores how a simple system can find a stable equilibrium with machine learning. The task seems easy: keep a ball centered on a track suspended by two cables. The length of the cables is varied by stepper motors, while the position of the ball is detected by the difference in weight between the two cables using load cells scavenged from luggage scales. The motors raise and lower each side to even out the forces on each, eventually achieving balance.

The twist here is that rather than a simple PID loop or another control algorithm, [Astrid] chose to apply machine learning to the problem using the Q-Behave library. The system detects when the difference between the two weights is decreasing and “rewards” the algorithm so that it learns what is required of it. The result is a system that gently settles into equilibrium. Check out the video below; it’s strangely soothing.

We’ve seen self-balancing systems before, from ball-balancing Stewart platforms to Segway-like two-wheel balancers. One wonders if machine learning could be applied to these systems as well.

Continue reading “Kinetic Sculpture Achieves Balance Through Machine Learning”

See This Mesmerizing 3D Printed Water Droplet Automaton

Water Experiment No. 33 by [Dean O’Callaghan]
Most modern automata are hand-cranked kinetic sculptures typically made from wood, and [videohead118] was inspired by a video of one simulating a wave pattern from a drop of liquid. As a result, they made a 3D printed version of their own and shared the files on Thingiverse.

In this piece, a hand crank turns a bunch of cams that raise and lower a series of rings in a simulated wave pattern, apparently in response to the motion of a sphere on a central shaft. The original (shown in the animation to the right) was made from wood by a fellow named [Dean O’Callaghan], and a video of it in its entirety is embedded below the break.

Continue reading “See This Mesmerizing 3D Printed Water Droplet Automaton”

Self playing violin - Phonoliszt Violina

Self-Playing Violin: Eighth Wonder Of The World

[Martin], of the YouTube channel [WinterGatan], recently uploaded a video tour of the Phonoliszt Violina, an orchestrion, or a machine that plays music that sounds as though an orchestra is playing. The interesting thing about this one is that it plays the violin. At the time of its construction, people weren’t even certain such a thing would be possible and so when [Ludwig Hupfeld] first built one around 1910, it was considered the eighth wonder of the world.

The particular one shown in the video is at the Speelklok Museum in Utrecht, the Netherlands. The bow is a rotating cylinder with 1300 horsehairs. To get the sound of a single violin, it actually uses three of them. Rather than the bow being moved to press against the strings, the violins tilt forward to make their strings contact the rotating bow. Only one string is used per violin, hence the reason that three violins are needed. The volume is controlled by making the bow rotate faster for more volume, and slower for less. Mechanical fingers press against the strings with cork to more closely imitate the human fingertip.

The machine consists of both the mechanical violin and piano under the guidance of two paper rolls, with one roll playing at a time. See and hear it in action in the video below.

Continue reading “Self-Playing Violin: Eighth Wonder Of The World”