Bluetooth HID Gamepad And HC-05 Serial Hack

“Which came first, the chicken or the egg?” Don’t bother us with stupid questions, they both co-evolved into the forms that we now serve up in tasty sandwiches or omelets, respectively. “Which came first, the HC-05 serial-flash-hack, or the wireless Bluetooth Gamepad?” Our guess is that [mitxela] wanted to play around with the dirt-cheap Bluetooth modules, and that building the wireless controller was an afterthought. But for that, it’s a well-done afterthought! (Video below the break.)

It all starts with the HC-05 Bluetooth module, which is meant to transfer serial data, but which can be converted into a general-purpose device costing ten times as much with a simple Flash ROM replacement. The usual way around this requires bit-banging over a parallel port, but hackers have worked out a way to do the same thing in bit-bang mode using a normal USB/Serial adapter. The first part of [mitxela]’s post describes this odyssey.

Continue reading “Bluetooth HID Gamepad And HC-05 Serial Hack”

New Part Day: ATtiny102 And 104

Atmel put out some new, small microcontroller chips early this year, and we’re just now starting to think about how we’d use them. The ATtiny102 and ATtiny104 (datasheet) sell for about a buck (US) and come in manageable SOIC packages with eight and fourteen pins respectively. It’s a strange chip though, with capabilities that fit somewhere between the grain-of-rice-sized ATtiny10 and the hacker-staple ATtiny25-45-85 series.

The ATtiny104 has a bunch of pins for not much money. It’s got a real hardware USART, which none of the other low-end AVRs do, and it’s capable of SPI in master mode. It has only one counter, but it’s a 16-bit counter, and it’s got the full AVR 10-bit ADC instead of the ATtiny10’s limited 8-bit ADC. The biggest limitation, that it shares with the ATtiny10, is that it has only 1 KB of program flash memory and 32 bytes (!) of RAM. You’re probably going to want to program this beast in assembler.

Read on for more reviews, and check out [kodera2t]’s video review at the end.

Continue reading “New Part Day: ATtiny102 And 104”

Encrypted USB Bootloader For AVRs

It probably doesn’t matter much for the hacker who sleeps with a bag of various microcontroller flash programmers under the pillow, but for an end-user to apply a firmware upgrade, convenience is king. These days that means using USB, and there are a few good AVR USB bootloaders out there.

But [Dmitry Grinberg] wanted more: the ability to encrypt the ROM images and verify that they haven’t been tampered with or otherwise messed up in transit. Combined with the USB requirement, that meant writing his own bootloader and PC-side tools. His bootloader will take unencrypted uploads if it doesn’t have a password, but if it’s compiled with a key, it will only accept (correctly) encrypted hex files.

Since the bootloader, including the USB firmware, is on the hefty side at 3.3 kB, [Dmitry] included hooks to re-use the bootloader’s USB code from within the target application. So if you were going to use V-USB in your program anyway, it doesn’t actually take up that much extra space. It’s a cute trick, but it ties the bootloader and user program together in a way that gives us the willies, without specifically knowing why. Perhaps we can debate this in the comments.

If you need an AVR USB bootloader, but you don’t need the encryption, we like Micronucleus. But if you need to deliver updates to users without them being able to modify (or screw up) the code in the middle, give [Dmitry]’s setup a try.

Binary Keyboard Is The Purest Form Of Input Device

You may be a hardcore keyboard aficionado whose buckled-spring switches will be pried from your cold dead hands, but there is a new model on the street that relegates your blank-key Das Keyboard or your trusty IBM Model M to the toy chest.

The new challenger comes from Reddit user [duckythescientist], who has created a minimalist three-key binary keyboard. It features a 0 key, a 1 key, a return key, and nothing else. Characters are entered as ASCII or Unicode, and the device emulates either a QWERTY or Dvorak keyboard layout to the host computer’s USB interface. It couldn’t be a simpler layout to learn, though we’d concede that not everyone has the entire binary Unicode table memorised.

The keys are mounted in a custom 3D printed case, and the electronics come from the creator’s own “tinydev” board based on an ATtiny85. All the code is available in a GitHub repository, and there is a very short video of its Unicode ability below the break.

Continue reading “Binary Keyboard Is The Purest Form Of Input Device”

I2C Bit Injection Adds Memory Banks To Everything

[Igor] wished to upgrade his newly acquired radio — a Baofeng UV-82 — with a larger memory for storing additional scanning channels, and came up with a very elegant solution: Replacing it’s EEPROM with a larger one and injecting the additional memory address bits into the I2C data line.

Continue reading “I2C Bit Injection Adds Memory Banks To Everything”

Interactive WeddingBots Built Into Nespresso Capsules

Today is a very special day for [Mandy and Sebastian], as they conclude the sacred solder joint of marriage. We send our sincerest congratulations and best wishes to the bridal couple, and can’t help but envy the guests of their ceremony, who received a very special wedding favor: A WeddingBot.

img_3337For their wedding party, [Mandy and Sebastian] created a little game on their own (translated). Each guest would receive a unique, little WeddingBot. Each of these is individually tailored for a certain guest and features a fitting look, a characteristic behavior and would play a special melody or jingle meaningful to this guest. However, the guests don’t get their WeddingBot, they get the WeddingBot of another guest – and the challenge to find this guest on the party. Guests would then exchange their WeddingBots, which also makes a great occasion to introduce themselves to each other. If the clues given by the WeddingBots themselves would not suffice to find the right owner, guest could place a WeddingBot on a clue station, which then would provide further hints by displaying images, texts or even riddles.

The design is based on the ATtiny45 microcontroller, with LEDs for the eyes, a light sensor, and a piezo disc for the sound as the main components. As an enclosure, they chose to repurpose empty Nespresso® capsules, which look nice and adds volume to the PCBs. The smiley face silk screen on the PCBs was then individualized with a black marker and packed in a beautiful hand-crafted box. The little fellows communicate with the Raspberry Pi based clue station by flashing their LEDs in a certain pattern. A light sensor hooked up to the Pi lets the station identify the bot and display the corresponding clue on a screen. Check out the video below to see how it works:

Continue reading “Interactive WeddingBots Built Into Nespresso Capsules”

AVR Vs PIC, Round 223: Fight!

Get ready to rumble! [Thierry] made the exact same Hello-World-esque project with two microcontrollers (that are now technically produced by the same firm!) to see how the experience went.

It’s not just an LED-blinker, though. He added in a light-detection function so that it only switches on at night. It uses the Forest Mims trick of reverse-biasing the LED and waiting for it to discharge its internal capacitance. The point is, however, that it gives the chip something to do instead of simply sleeping.

Although he’s an AVR user by habit, [Thierry] finds in favor of the PIC because it’s got a lower power draw both when idling and when awake and doing some computation. This is largely because the PIC has an onboard low-power oscillator that lets it limp along at 32 kHz, but also because the chip has a lower power consumption in general. In the end, it’s probably a 10% advantage to the PIC on power.

If you’re competent with one of the two chips, but not the other, his two versions of the same code would be a great way to start familiarizing yourself with the other. We really like his isDarkerThan() function which makes extensive use of sleep modes on both chips during the LED’s discharge period. And honestly, at this level the code for the two is more similar than different.

(Oh, and did you notice [Thierry]’s use of a paper clip as a coin-cell holder? It’s a hack!)

Surprisingly, we’ve managed to avoid taking a stray bullet from the crossfire that occasionally breaks out between the PIC and AVR fans. We have covered a “shootout” before, and PIC won that round too, although it was similarly close. Will the Microchip purchase of Atmel calm the flames? Let’s find out in the comment section. We have our popcorn ready!