Hackaday Prize Entry: Electronics Anywhere, Any Time

There has always been a need for electronic graph paper – a digital device that records ones and zeros, writes bits, and keeps track of analog voltages. Many moons ago, this sort of device was graph paper, wrapped around a drum, slowly spinning around once per day. With the advent of cheap, powerful microcontrollers and SD cards these devices have become even more capable.

For their entry to the Hackaday Prize, [Kuldeep] and [Sandeep] have built Box0. It’s a lab in a bag, an open source data acquisition unit, and a USB device that toggles pins, all in one simple device.

The hardware for this devices consists of an STM32F0 microcontroller, a USB port, and enough pins to offer up a few SPIs, an I2C bus, eight channels of digital output, two PWM channels, a UART, analog in, and analog out.

Of course, hardware is the easy part. If you want to do something useful with a device like this, you need some software. Here is where the project really shines. They have libraries for Python, Julia, C, Java, and JavaScript. That’s enough to make anyone happy, and makes this Box0 exceptionally capable. For a demonstration, they’ve built a curve tracer for transistors and red, green, and blue LEDs with the Box0. It works, and it looks like this actually is an exceptionally useful device.

Solar Powered Hydroponics

[Dan Bowen] describes the construction of a backyard hydroponics set-up in an angry third person tirade. While his friends assume more nefarious, breaking, and bad purposes behind [Dan]’s interest in hydroponics; he’d just like some herbs to mix into the occasional pasta sauce.

Feel particularly inspired one day after work, he stopped by the local hardware store and hydroponics supply. He purchases some PVC piping, hoses, fittings, pumps, accessories, and most importantly, a deck box to hide all the ugly stuff from his wife.

The design is pretty neat. He has an open vertical spot that gets a lot of light on his fence. So he placed three lengths of PVC on a slant. This way the water flows quickly and aerates as it goes. The top of the pipes have holes cut in them to accept net baskets.

The deck box contains a practically industrial array of sensors and equipment. The standard procedure for small-scale hydroponics is just to throw the water out on your garden and replace the nutrient solution every week or so. The hacker’s solution is to make a rubbermaid tote bristle with more sensors than the ISS.

We hope his hydroponics set-up approaches Hanging Gardens of Babylon soon.

Orbs Light to Billie Jean on this Huge Sequencer

Sequencers allow you to compose a melody just by drawing the notes onto a 2D grid, virtually turning anyone with a moderate feel for pitch and rhythm into an electronic music producer. For  [Yuvi Gerstein’s] large-scale grid MIDI sequencer GRIDI makes music making even more accessible.

Instead of buttons, GRIDI uses balls to set the notes. Once they’re placed in one of the dents in the large board, they will play a note the next time the cursor bar passes by. 256 RGB LEDs in the 16 x 16 ball grid array illuminate the balls in a certain color depending on the instrument assigned to them: Drum sounds are blue, bass is orange and melodies are purple.

Underneath the 2.80 x 1.65 meters (9.2 x 4.5 foot) CNC machined, sanded and color coated surface of the GRIDI, an Arduino Uno controls all the WS2812 LEDs and reads back the switches that are used to detect the balls. A host computer running Max/MSP synthesizes the ensemble. The result is the impressive, interactive, musical art installation you’re about to see in the following video. What better tune to try out first than that of Billie Jean whose lighted sidewalk made such an impression on the original music video.

Continue reading “Orbs Light to Billie Jean on this Huge Sequencer”

Make Your Own Transparent Wood

Want to bring your fine antique furniture into the 21st century? Make it clear with transparent wood. That’s what [blorggg] is doing over on Hackaday.io, and it looks cool enough to have a some interesting and novel applications besides small, clear test pieces.

The recipe for transparent wood is surprisingly simple, and all the ingredients are readily available from a drug store or home supply store. First, the wood is soaked in a bath containing lye and sodium sulfite for several hours. The wood is then bleached in a bath of hydrogen peroxide. After this, the wood is transparent, but very weak. Infusing the wood with epoxy resin strengthens the wood.

We first heard about this process back in May when the the paper [blorggg] based his recipe on came to light. the lye and sodium sulfite are frequently used in the paper industry to dissolve the lignin in wood. By removing the lignin, the microscopic structure of a piece of wood becomes just a series of tubes and thin cell walls. After bleaching, adding the epoxy shores up the now exceptionally weak structure of a block of wood.

While the original researchers only made two pieces of transparent wood – end grain and cross grain basswood, inexplicably referred to as R-wood and L-wood – [blorggg] is taking this much further. He’s using plywood to great effect, and the process is simple enough to expand to woods a bit weirder than basswood. If you have some scrap walnut, burl, or some exotic wood, this might be something to try out.

MIT Thinks It Can One-Up TOR With New Anonymity Network: Riffle

Tor is the household name in anonymous networks but the system has vulnerabilities, especially when it comes to an attacker finding out who is sending and receiving messages. Researchers at MIT and the École Polytechnique Fédérale de Lausanne think they have found a better way in a system called Riffle. You can dig into the whitepaper but the MIT news article does a great job of providing an overview.

The strength at the core of Tor is the Onion Routing that makes up the last two letters the network’s name. Riffle keeps that aspect, building upon it in a novel way. The onion analogy has to do with layers of skins — a sending computer encrypts the message multiple times and as it passes through each server, one layer of encryption is removed.

Riffle starts by sending the message to every server in the network. It then uses Mix Networking to route the message to its final destination in an unpredictable way. As long as at least one of the servers in the network is uncompromised, tampering will be discovered when verifying that initial message (or through subsequent authenticated encryption checks as the message passes each server).

The combination of Mix Networking with the message verification are what is novel here. The message was already safe because of the encryption used, but Riffle will also protect the anonymity of the sender and receiver.

[via Engadget]

Fail Of The Week: How Not To Build Your Own Motorcycle

There’s a saying among writers that goes something like “Everyone has a novel in them, but in most cases that’s where it should stay”. Its source is the subject of some dispute, but it remains sage advice that wannabe authors should remember on dark and stormy nights.

It is possible that a similar saying could be constructed among hackers and makers: that every one of us has at least one motor vehicle within, held back only by the lack of available time, budget, and workshop space. And like the writers, within is probably where most of them should stay.

[TheFrostyman] might have had cause to heed such advice. For blessed with a workshop, a hundred dollars, and the free time of a 15-year-old, he’s built his first motorcycle. It’s a machine of which he seems inordinately proud, a hardtail with a stance somewhere closer to a café racer and powered by what looks like a clone of the ubiquitous Honda 50 engine.

Unfortunately for him, though the machine looks about as cool a ride as any 15-year-old could hope to own it could also serve as a textbook example of how not to build a safe motorcycle. In fact, we’d go further than that, it’s a deathtrap that we hope he takes a second look at and never ever rides. It’s worth running through some of its deficiencies not for a laugh at his expense but to gain some understanding of motorcycle design.

Continue reading “Fail Of The Week: How Not To Build Your Own Motorcycle”

Parallel Compressors for Sandblasting without Crashing Your Grid

[Hannah] is restoring a 1962 Volkswagen Bug. The goal is to get the car on the road in time for her driver’s test. This is no easy task, as the lower 3 inches of all the body work is rusted out, and the engine is…. well, missing. Basically, the car needs a frame off restoration. This means that [Hannah] will have a lot of metal bodywork to clean up. One of the easiest ways to do that is sandblasting.

Large scale sandblasting is a bit different from most air-powered operations. Sandblasting needs only a modest air pressure, but a high air flow. [Hannah] need 25 Sustained Cubic Feet Per Minute (SCFM) at 80 PSI for sandblasting. Most compressors can easily supply that pressure, but 25 SCFM is asking quite a lot. She could go with an expensive 3 phase unit, or rent a diesel screw compressor. However, [Hannah] decided to connect 4 compressors in parallel to give her the flow she needed.

Connecting the air outputs in parallel is easy. The problem is the electricity. Each compressor is rated for 9 amps while running. They draw quite a bit more while starting up. The compressors have to be wired to individual 15 amp circuits to avoid blowing fuses. They also need to be started in sequence so they don’t pull down the AC for the entire house while starting.

Hannah could have used any sort of delay for this, but she chose an Arduino. The Arduino’s wall wart is wired up to the master compressor. Turning on the master powers up the Arduino which immediately starts a 2 second delay. When the delay times out, the Arduino fires up the second compressor. After several delay loops, all 4 compressors are running together.

hannah-schThe Arduino’s GPIO pins can’t handle 9 amp AC loads, so [Hannah] wired them to TIP120 transistors. The TIP120s drive low power relays, which in turn drive high current air conditioning relays. The system works quite well, as can be seen in the video below the break.

If you’re interested in air compressor projects, check out this setup made from an old refrigerator compressor. For more background on the TIP120, check out this article about these useful transistors.

Continue reading “Parallel Compressors for Sandblasting without Crashing Your Grid”