Keep Track Of The Compost With LoRaWAN

Composting doesn’t seem difficult: pile up organic matter, let it rot. In practice, however, it’s a bit more complicated– if you want that sweet, sweet soil amendment in a reasonable amount of time, and to make sure any food-born pathogens and weed seeds don’t come through, you need a “hot” compost pile. How to tell if the pile is hot? Well, you could go out there and stick your arm in like a schmuck, or you could use [Dirk-WIllem van Gulik]’s “LORAWAN Compostheap solarpowered temperaturesensor” (sic).

The project is exactly what it sounds like, once you add some spaces: a solar-powered temperature sensor that uses LoRaWAN to track temperatures inside (and outside, for comparison) the compost heap year round. Electronically it is pretty simple: a Helltech CubeCell AB01 LoraWAN module is wired up with three DS18B20 temperature sensors, a LiPo battery and a solar panel. (The AB01 has the required circuitry to charge the battery via solar power.) Continue reading “Keep Track Of The Compost With LoRaWAN”

Tektronix TDS8000 banner

Repairing An Old Tektronix TDS8000 Scope

Over on his YouTube channel our hacker [CircuitValley] repairs an old TDS8000 scope.

The TDS8000 was manufactured by Tektronix circa 2001 and was also marketed as the CSA8000 Communications Signal Analyzer as well as the TDS8000 Digital Sampling Oscilloscope. Tektronix is no longer manufacturing and selling these scopes but the documentation is still available from their website, including the User Manual (268 page PDF), the Service Manual (198 page PDF), and some basic specs (in HTML).

You can do a lot of things with a TDS8000 scope but particularly its use case was Time-Domain Reflectometry (TDR). A TDR scope is the time-domain equivalent of a Vector Network Analyzer (VNA) which operates in the frequency-domain.

Continue reading “Repairing An Old Tektronix TDS8000 Scope”

Tamagotchi Torture Chamber Is Equal Parts Nostalgia And Sadism

Coming in hot from Cornell University, students [Amanda Huang], [Caroline Hohner], and [Rhea Goswami] bring a project that is guaranteed to tickle the funny bone of anyone in the under-40 set, and sadists of all ages: The Tamagochi Torture Chamber.

Tamagotchi Torture Chamber displaying Tombstone
He’s dead, Jim.

In case you somehow missed it, Bandai’s Tamagochi is a genre-defining digital pet that was the fad toy at the turn of the millennium, and has had periodic revivals since. Like the original digital pet, there are three pushbuttons to allow you to feed, play with, and clean your digital pet. These affect the basic stats of happiness, health, food and weight in ways that will be familiar to anyone who played with the original Tamagochi. Just as with the original, mistreatment or neglect causes the Tamagochi to “die” and display a tombstone on the TFT display.

Where the “Torture Chamber” part comes in is the presence of an accelerometer and soft physics simulation– the soft physics gets an entire core of the Pi Pico at the heart of this build dedicated to it, while the other core handles all inputs, display and game logic. What this enables is the ability to bounce the digital pet off the walls of its digital home with an adorable squish (and drop in health stat) by tilting the unit. You can check that out in the demo video blow.

Is it overkill for a kids toy to have a full soft body simulation, rather than just a squish-bounce animation? Probably, but for an ECE project, it lets the students show off their chops… and possibly work out some frustrations.

We won’t judge. We will point you to other Tamagotchi-inspired projects, though: like this adorable fitness buddy, or this depressingly realistic human version.

If you’ve got an innovative way to torture video game characters, or a project less likely to get you on Skynet’s hitlist, don’t forget to send in a tip!

Continue reading “Tamagotchi Torture Chamber Is Equal Parts Nostalgia And Sadism”

Tiny Tellurium Orbits Atop A Pencil

We like scale models here, but how small can you shrink the very large? If you’re [Frans], it’s pretty small indeed: his Micro Tellurium fits the orbit of the Earth on top of an ordinary pencil. While you’ll often see models of Earth, Moon and Sun’s orbital relationship called “Orrery”, that’s word should technically be reserved for models of the solar system, inclusive of at least the classical planets, like [Frans]’s Gentleman’s Orrery that recently graced these pages. When it’s just the Earth, Moon and Sun, it’s a Tellurium.

The whole thing is made out of brass, save for the ball-bearings for the Earth and Moon. Construction was done by a combination of manual milling and CNC machining, as you can see in the video below. It is a very elegant device, and almost functional: the Earth-Moon system rotates, simulating the orbit of the moon when you turn the ring to make the Earth orbit the sun. This is accomplished by carefully-constructed rods and a rubber O-ring.

Unfortunately, it seems [Franz] had to switch to a thicker axle than originally planned, so the tiny moon does not orbit Earth at the correct speed compared to the solar orbit: it’s about half what it ought to be. That’s unfortunate, but perhaps that’s the cost one pays when chasing smallness. It might be possible to fix in a future iteration, but right now [Franz] is happy with how the project turned out, and we can’t blame him; it’s a beautiful piece of machining.

It should be noted that there is likely no tellurium in this tellurium — the metal and the model share the same root, but are otherwise unrelated. We have featured hacks with that element, though.

Thanks to [Franz] for submitting this hack. Don’t forget: the tips line is always open, and we’re more than happy to hear you toot your own horn, or sing the praises of someone else’s work. Continue reading “Tiny Tellurium Orbits Atop A Pencil”

The Most Satisfying Way To Commit

Have you ever finished up a bit of code and thought that typing “git push” in a terminal is just not a satisfying finish? So did [penumbriel], so he built a big red button he could smash instead.

This is a very simple hack: an Arduino sits inside a 3D-printed case that holds a big, red button. The case itself is very sturdily made to withstand a good satisfying smack: it has thick walls, brass insets, and rubber feet to protect the de The code for the Arduino is very, very simple: it spoofs a USB HID using the standard keyboard library, and automatically types out “git push” whenever the button is pressed. Or smashed, because you know you’re going to want to slam that thing. So far, so good– very innovative for 2006, right?

The detail that made this project stand out in 2025 was the technique [penumbriel] used for lettering– we’re always looking

With a simple soap-and-water mask, the cured silicone peels right off, leaving a clean label.

for new ways to make a good front panel. In this case, the letters were printed as a valley and filled with silicone adhesive. To protect the top surface of the print, soapy water was used as a mask. The silicone would not adhere to the wet plastic, so all [penumbriel] had to do was peel it off after it had cured, leaving solid white inside. It’s a neat trick, and a great way to use up an old tube of silicone before it goes hard. You could also use it for injection molding, but this is a great use for the dregs.

This might go well next to the programmer’s macro pad we featured a while back, but it really needs to stay as a big red button for maximum satisfaction.

 

Spiral Connector Makes Fastener-Free Assemblies

[Anton Gaia]’s SPIRAL sculpture resembles an organizer or modern shelving unit, but what’s really interesting is how it goes together. It’s made entirely from assembling copies of a single component (two, if you count the short ‘end pieces’ as separate) without a fastener in sight. [Anton] made the 3D model available, so check it out for yourself!

The self-similar design of the joint, based on the golden spiral, makes a self-supporting joint that requires neither glue nor fasteners.

The ends of each part form a tight, spiral-shaped joint when assembled with its neighbors. Parts connect solely to themselves without any need of fasteners or adhesives.

The end result is secure, scalable, and with a harmonious structure that is very pleasing to look at. Small wonder [Anton] used it as the basis for artistic work. You can see more pictures here.

The design of the joint is based on the golden spiral (which it turns out is also a pretty useful chicken coop architecture.)

The parts lend themselves quite well to 3D printing, and we’d like to take a moment to appreciate that [Anton] shared the .step file instead of just an STL. STEP (or STP) files can be imported meaningfully into CAD programs, making it much easier to incorporate the design into one’s own work. STEP is also supported natively in many 3D printer slicers, so there’s no need to convert formats just to print them.

A brief video describing SPIRAL is embedded just below, with a closer look at how the pieces fit together.

Continue reading “Spiral Connector Makes Fastener-Free Assemblies”

Capturing Screenshots Using A Fake Printer

If you have very old pieces of analogue test equipment with CRTs on your bench, the chances are they will all have surprisingly similar surrounds to their screens. Back when they were made it was common to record oscilloscope screens with a Polaroid camera, that would have a front fitting for just this purpose.

More recent instruments are computerized so taking a screen shot should be easier, but that’s still not easy if the machine can’t save to a handy disk. Along comes [Tom] with a solution, to hook up a fake printer, and grab the screen from a print.

Old instruments come with a variety of ports, serial, IEE-488, or parallel, but they should usually have the ability to print a screen. Then capturing that is a case of capturing an interpreting the print data, be it ESC/P, PCL5, Postscript, or whatever. The linked page takes us through a variety of techniques, and should be of help to anyone who’s picked up a bargain in the flea market.

This isn’t the only time we’ve touched on the subject of bringing older computerized equipment into the present, we’ve also shown you a disk drive emulator.

Thanks [JohnU] for the tip.