Why Fix A Remote When You Can Just Build A New Device?

Those who have been around the block, and the sun, a fair few times will know that they certainly don’t make ’em like they used to. It doesn’t particularly matter what “them” is; it’s merely a widely accepted fact that society has trended towards more disposable products over ones that have a long service life. [mcu_nerd] was suffering from this very problem, as their TV remote had its power button begin to fail. Of course, hackers don’t see problems – they merely see opportunities for projects.

[mcu_nerd] decided to skip repairing the TV remote, under the suspicion that disassembling the device would likely lead to its destruction. Instead, an Atmega328P development board was pressed into service as a replacement remote, with the addition of an IR LED and a push button. Whereas the TV-B-Gone existed as a device to cause havoc by switching televisions off, [mcu_nerd]’s TV-B-On does the opposite job.

A later revision was spun up with its own PCB, and features an Attiny85, which is more than capable of handling the job. Showing thoughts of the future in the design, there are provisions for extra buttons to be added should the project require a nicer enclosure, and a space for an external crystal if necessary.

These devices have a long and storied history; we reported on a particularly powerful version back in 2009.

A Doom-esque Port To The ATmega328

Doom holds a special place as one of the biggest games of the 1990s, as well as being one of the foundational blocks of the FPS genre. Long before 3D accelerators hit the market, iD Software’s hit was being played on computers worldwide, and later spread to all manner of other platforms. [David Ruiz] decided to build a cutdown version for everyone’s favourite, the ATmega328.

Due to the limited resources available, it’s not a direct port of Doom. [David] instead took some sprites and map data from the original game, and built a raycasting engine similar to that of Wolfenstein 3D. Despite the limited memory and CPU cycles, the basic game can run at between 8-11 FPS. There are fancy dithering tricks to help improve the sense of depth, a simplified enemy AI, and even a custom text library for generating the UI.

It’s a great example of what can be done with a seemingly underpowered part. We’ve seen similar work before, with Star Fox replicated on the Arduboy. A hacker’s ingenuity truly knows no bounds.

 

A Super Tidy School Bus RV Conversion

Many of us have seen an old bus for sale for a tantalizingly low price, and begun thinking about the possibilities. [EpiclyEpicEthan1] is someone who took the next step, bought the bus, and got to work converting it to an RV, with impressive results.

The bus in question is a 2002 International RE3000, which in its former life had helped move school children and barrels of pool chemicals to and fro. The project began, as many do, with a full teardown of the interior. With this done, the floor was treated to remove rust and repainted. Insulation and new plywood boards were then installed, and the fit-out began.

The amount of work involved in the build is immense. There’s a master bedroom, auxiliary bedroom, bathroom, and kitchen area. It’s a fully featured RV in every sense of the word, and yes, there is hot water. There was also significant work done to improve the driving experience, with switches relocated, lights added, and a reversing camera installed for easier parking.

Overall, it’s an impressive project that should serve as great inspiration to anyone wanting to attempt something similar. Then again, if your means are a little more limited, you could always go for a Corolla build.

Building A Foam Machine From A Leaf Blower And A Water Pump

Imagine a tub overflowing with bubble bath, except it’s a club dancefloor and music is pumping all night. This is what is known as a “foam party” — a wild and exciting concept that nonetheless many are yet to experience. The concept exploded in popularity in Ibiza in the 1990s, and foam parties are regularly held at nightclubs and festivals the world over.

Foam is generated with the obviously-named foam machine, and these can be readily purchased or hired for anyone wishing to host such an event. However, that’s not the hacker way. If you’re a little ingenious and take heed of the safety precautions, here’s how you can do it yourself.

Continue reading “Building A Foam Machine From A Leaf Blower And A Water Pump”

Nuclear Reactor Simulator Is The Project Of A Lifetime

Have you been watching Chernobyl? Well, so has everyone else. Right now it seems the whole Internet is comprised of armchair dosimetrists counting roentgens in their sleep, but [Mark Wright] doesn’t need a high-budget TV show to tell him about the challenges of wrangling the atom with 1980s technology. He’s done it for real. His memories of working at a Westinghouse Pressurized Water Reactor over 30 years ago are so sharp that he’s been building a nuclear reactor “simulator” running on the Raspberry Pi that looks nearly as stressful as sitting in control room of the real thing.

The simulator software is written in Python, and is responsible for displaying a simplified overview of the reactor and ancillary systems on the screen. Here all the information required to operate the “nuclear plant” can be seen at a glance, from the utilization of individual pumps to the position of the control rods.

Continue reading “Nuclear Reactor Simulator Is The Project Of A Lifetime”

Replacement Batteries For The Sony Discman

Some of the first Sony Discmans included rechargeable batteries. These batteries were nickel metal hydride batteries (because of the technology of the time) and are now well past their service life. The new hotness in battery technology is lithium — it offers greater power density, lighter weight, and a multitude of ready-to-go, off the shelf cells. What if someone were to create a new battery pack for an old Sony Discman using lithium cells? That’s exactly what [sjm4306] did for their entry into this year’s Hackaday Prize.

The Discman [sjm] is working with uses a custom, Sony-branded battery based on NiMH technology with a capacity of around 500 mAH. After carefully measuring the dimensions of this battery, it was replicated in plastic with a 3D printer. This enclosure was then stuffed with a small lithium cell scavenged from a USB power bank.

The only tripping points for this build were the battery contacts. The originally battery had two contacts on the end that fit the Discman exactly; these were replicated with a small PCB wired up to the guts of the USB powerbank. The end result is a direct, drop-in replacement for the original Discman battery with a higher capacity, that’s also rechargeable via USB. It’s a fantastic project, with the entire build video available below.

Continue reading “Replacement Batteries For The Sony Discman”

Testing Brushless Motors With A Little Help From The ESC

These days, brushless motors are the go-to for applications requiring high power in a compact package. It’s possible to buy motors in all manner of different configurations off the shelf, and the range available is only getting better. However, sometimes getting something truly optimal requires a bit of customization. With motors, this can involve swapping magnets or hand-winding coils. In these cases, it can be useful to test the modified motor to determine its performance. [JyeSmith]’s ESC tester is capable of just that.

Fundamentally, the ESC tester is a simple piece of hardware. It uses a microcontroller to speak the Dshot protocol. This protocol is typically used to communicate between multi-rotor flight controllers and ESCs. In this case, the Dshot telemetry is instead displayed on a small OLED screen. This enables the user to read off KV values, as well as other useful data such as current draw and RPM. This can help quantify the effects of any modifications made to a motor, as well as prove useful for learning about parts of spurious origins.

It’s a device that should prove useful to those trying to eke out every last drop of performance from their multi-rotor builds. We expect to see more similar projects emerge as drone racing continues to increase in popularity. If you’re still trying to learn the theory behind the technology, you can always build your own brushless motor. Video after the break.

[Thanks to Keegan for the tip!]

Continue reading “Testing Brushless Motors With A Little Help From The ESC”