The Most Trustworthy USB-C Cable Is DIY

We like USB-C here at Hackaday, but like all specifications it is up to manufacturers to follow it and sometimes… they don’t. Sick of commercial cables either don’t label their safe wattage, or straight up lie about it, [GreatScott!] decided to DIY his own ultimate USB-C-PD cable for faster charging in his latest video, which is embedded below.

It’s a very quick project that uses off-the-shelf parts from Aliexpress: the silicone-insulated cable, the USB-C plugs (one with the all-important identifier chip), and the end shells. The end result is a bit more expensive than a cable from Aliexpress, but it is a lot more trustworthy. Unlike the random cable from Aliexpress, [GreatScott!] can be sure his has enough copper in it to handle the 240W it is designed for. It should also work nicely with USB PPS, which he clued us into a while back. While [GreatScott!] was focusing here on making a power cable, he did hook up the low-speed data lines, giving him a trustworthy USB2.0 connection.

This isn’t the first time we’ve seen someone test USB gear and find it wanting, though the problem may have improved in the last few years. Nowadays it’s the data cables you cannot trust, so maybe rolling your own data cables will make a comeback. (Which would at least be less tedious than than DB-25 was back in the day. Anyone else remember doing that?) USB-C can get pretty complicated when it comes to all its data modes, but we have an explainer to get you started on that. Continue reading “The Most Trustworthy USB-C Cable Is DIY”

Dead Amstrad Becomes Something New

When you run into old hardware you cannot restore, what do you do? Toss it? Sell it for parts? If you’re [TME Retro], you hide a high-end mini PC inside an Amstrad-shaped sleeper build.

The donor  laptop is an Amstrad ALT-286 with glorious 80s styling that [TME Retro] tried to save in a previous video. Even with help from the community there was no saving this unit, so we can put away the pitchforks and torches. This restomod is perhaps the best afterlife the old Amstrad could have hoped for.

At first [TME Retro] was going to try and fit an iPad Pro screen, but it turned out those don’t have the driver-board ecosystem the smaller iPads do, so he went with a non-retina LCD panel from Amazon instead. Shoving an LCD where an LCD used to live and sticking an expensive mini-PC inside a bulky 80s case is not the most inspiring of hacks, but that’s not all [TME Retro] did.

Continue reading “Dead Amstrad Becomes Something New”

Mousa rotary dial and circuit

Adapting An Old Rotary Dial For Digital Applications

Today in old school nostalgia our tipster [Clint Jay] wrote in to let us know about this rotary dial.

If you’re a young whippersnapper you might never have seen a rotary dial. These things were commonly used on telephones back in the day, and they were notoriously slow to use. The way they work is that they generate a number of pulses corresponding to the number you want to dial in. One pulse for 1, two pulses for 2, and so on, up to nine pulses for 9, then ten pulses for 0.

We see circuits like this here at Hackaday from time to time. In fact, commonly we see them implemented as USB keyboards, such as in Rotary Dial Becomes USB Keyboard and Rotary Dialer Becomes Numeric Keypad.

Continue reading “Adapting An Old Rotary Dial For Digital Applications”

This Relay Computer Has Magnetic Tape Storage

Magnetic tape storage is something many of us will associate with 8-bit microcomputers or 1960s mainframe computers, but it still has a place in the modern data center for long-term backups. It’s likely not to be the first storage tech that would spring to mind when considering a relay computer, but that’s just what [DiPDoT] has done by giving his machine tape storage.

We like this hack, in particular because it’s synchronous. Where the cassette storage of old just had the data stream, this one uses both channels of a stereo cassette deck, one for clock and the other data. It’s encoded as a sequence of tones, which are amplified at playback (by a tube amp, of course) to drive a rectifier which fires the relay.

On the record side the tones are made by an Arduino, something which we fully understand but at the same time can’t help wondering whether something electromechanical could be used instead. Either way, it works well enough to fill a relay shift register with each byte, which can then be transferred to the memory. It’s detailed in a series of videos, the first of which we’ve paced below the break.

If you want more cassette tape goodness, while this may be the slowest, someone else is making a much faster cassette interface. Continue reading “This Relay Computer Has Magnetic Tape Storage”

In Film, What’s Old May Still Be New Again

We recently published an affectionate look at a Polaroid Land camera, whose peel-apart instant film is long out of production except for a very few single exposure packs form a boutique manufacturer. All that was left was a discussion of modifying it for conventional roll film, or perhaps hacking a modern back-to-front Polaroid sheet into it.

Never say never though, because along come the Chinese company Light Lens Lab with a short announcement at the end of a post talking about grain structures and anti-halation layer materials for their black and white film.

Lastly, with our future development plan, we are currently developing and researching instant peel-apart film, with plans on producing and making available black and white peel-apart film by 2025 in various format. We aim to have an update on our packaging and test shot for the next development/research progress installment. We are also researching, developing and producing colour reversal films that consist of a dye-incorporating development process, commonly known as K-14, for 135 and 120 formats in 2026.

So there you go, no sooner has Hackaday declared a format unavailable, than it shows every sign of reappearing. At this point we’d like to take the opportunity to report that McDonalds Szechuan Chicken McNugget sauce will never ever be available again. Continue reading “In Film, What’s Old May Still Be New Again”

A Steady Vacuum For The Fastest Cassette Tape Drive Ever

If you think of a 1960s mainframe computer, it’s likely that your mental image includes alongside the cabinets with the blinkenlights, a row of reel-to-reel tape drives. These refrigerator-sized units had a superficial resemblance to an audio tape deck, but with the tape hanging down in a loop either side of the head assembly. This loop was held by a vacuum to allow faster random access speeds at the head, and this fascinates [Thorbjörn Jemander]. He’s trying to create a cassette tape drive that can load 64 kilobytes in ten seconds, so he’s starting by replicating the vacuum columns of old.

The video below is the first of a series on this project, and aside from explaining the tape drive’s operation, it’s really an in-depth exploration of centrifugal fan design. He discovers that it’s speed rather than special impeller design that matters, and in particular a closed impeller delivers the required vacuum. We like his home-made manometer in particular.

What he comes up with is a 3D printed contraption with a big 12 volt motor on the back, and a slot for a cassette on the front. It achieves the right pressure, and pulls the tape neatly down into a pair of loops. We’d be curious to know whether a faster motor such as you might find in a drone would deliver more for less drama, but we can see the genesis of a fascinating project here. Definitely a series to watch.

Meanwhile, if your interest extends to those early machine rooms, have a wallow in the past.

Continue reading “A Steady Vacuum For The Fastest Cassette Tape Drive Ever”

A Vintage ‘Scope Comes Back To Life

We’re suckers for a vintage electronic teardown here at Hackaday, and thus it’s pleasing to see [Thomas Scherrer OZ2CPU] with a 1962 AEG oscilloscope on his bench. It’s definitely seen better days, and is a single-trace 10 MHz unit of the type you might have seen in a typical general purpose electronics lab back in the day.

Pulling the cover off, and as expected there’s a row of tubes each side of the centrally mounted CRT. No printed circuits in sight, and no transistors either, though the rectifiers are selenium parts. After a clean-up it’s time to look at the tubes, and they show the metallic deposits characteristic of long operation. We’re more used to that from older televisions than test equipment,

Gently bringing the power up it looks promising, but there’s a purple glow from one of the PCL82 triode-pentodes. Replacing that and a double-triode results in a ‘scope that surprisingly, is working. It was evidently a high quality device in the first place, with components capable of lasting for over six decades.

We’ve seen more from his bench involving tubes, including this device using a magic-eye tube as the heavy lifter.

Continue reading “A Vintage ‘Scope Comes Back To Life”