CNC Tic Tac Toe

cnc-tic-tac-toe

This computer controlled physical Tic Tac Toe game is built from parts scavenged from common consumer goods. Specifically, the sled is made up of a combination of printer and DVD drive parts.

The build is delightful, and you can’t move on to the next feature until you watch it play a game in the clip after the break. The game board can move along two axes. It’s obvious from the image above that the printer ink cartridge sled has been reused to let the board move left and right. But the DVD lens sled hidden under the board lets it move forward and back. The piece of protoboard seen on the left is an IR reflectance scanner. The board moves systematically under this sensor. Whenever a black square (placed by the human player) is in play it prevents the IR beam from reflecting back. What you can’t see in this image is the yellow disc dispenser which is just out of the frame. It uses the DVD disc tray motor to place the computer’s pieces. We think this build is just begging to be turned into a Turing Machine demonstration.

If you liked this one we’re sure you’ll also appreciate CNC chess.

Continue reading “CNC Tic Tac Toe”

Wooden Teeth For Your USB Keyboard

wooden-keyboard

We just got an ergonomic keyboard for the first time and absolutely love it. But the look of this keyboard hack has us second guessing ourselves. [Will Pretend] pulled off an absolutely stunning wooden retrofit for his USB keyboard. Be warned, his project log includes 175 photos, and most of them have captions.

He started off by taking apart the original USB keyboard to see what he was working with. Before digging in to the valuable wood stock he cut test pieces using some thin MDF. But once he had a clear plan to get to the end of the project it was full stem ahead.

The keys are not simple Chicklet style overlays, they have depth like you would expect to find on low-grade plastic peripherals. This was accomplished by milling each key, then sending them through the laser cutter to each the letter on top.

Take some time to make your way through the entire project (here’s a thumbnail layout if you get frustrated). Unfortunately [Will] says he doesn’t actually use the keyboard because of grains catching and the keys move around a bit too much. But it does work.

Oil Feed Retrofit For A CNC Mill Starting To Come Together

oil-feed-retrofit-for-cnc-mill

Here is the first real fruit of [Joel’s] labor on his oiling system for a CNC mill. Regular readers will remember hearing about his quest to go from a manual mill to a CNC version. As part of the overhaul he decided to add a system that can dispense oil to the different wear parts on the machine. We first looked in on the project when he showed off the pipe bender he built for the task. Now that he has that at his disposal he was able to route tubing to many of the parts.

The system starts with a central brass manifold which is pictured in the foreground. Each pipe was bent and cut to reach its destination with a minimum of wasted space. After a test fit showed good results he brazed the pieces together using silver solder. Each of the ball nuts have been drilled out so that oil will be injected onto the threads of the ball rod. Three input ports on the manifold will eventually let [Joel] connect the oil injection system via flexible tubing.

Handwriting Robot Arm Is A Little Stiff-wristed

handwriting-robot

Check out this robot arm capable of handwriting which is orders of magnitude clearer than our own. It was built by [Patrick Barnes] as contract work for a campaign to raise funding for research into Duchenne Muscular Dystrophy.

Don’t miss the video after the break which starts off with the satisfying whine of some serious stepper motors. Judging scale from this image is a bit tough, but [Patrick] tells us that the entire assembly stands almost fourteen inches tall and the arm has a reach of around twenty inches. The demonstration shows off it’s abilities by drawing a Hilbert Curve. From watching the action you’ll realize that, though this arm and hand look fantastic, this is really a SCARA plotter. The wrist and fingers are for looks only, providing a place where the felt-tipped pen can be mounted (held flush to the paper with a rubber band). Whether that’s a disappointment or not, the precision and look of the machine bring it very high marks. It could take a bit of a lesson in penmanship from another we’ve seen though.

Continue reading “Handwriting Robot Arm Is A Little Stiff-wristed”

CNC Ping Pong Printer Uses Simple Construction

spherebot

This is one of the simplest CNC builds we’ve seen but it still functions quite well. It’s a clone of the EggBot, but is aimed at printing on spherical Ping Pong balls rather than oblong eggs. [Chad] calls it the Spherebot, but you should be careful not to confuse it with the morphing sphere robot which can walk around like a hexapod.

The project is both mechanically and electronically simple. The body of the printer is made up of three acrylic plates, which we’re sure were clamped together when drilling holes to guarantee proper alignment. Threaded rod and nuts are used to mount the plates to one another, as well as to hold the sphere in place while printing. One stepper motor turns the ball while the other pivots the pen mount. A servo motor is responsible for lifting the pen. The entire thing is driven by an Arduino along with two stepper motor driver boards. Don’t miss [Chad’s] presentation embedded after the break.

Continue reading “CNC Ping Pong Printer Uses Simple Construction”

Low-resolution Toaster Prints On Slices Of Bread

low-resolution-bread-toaster

Why toast your bread evenly when you can burn low-resolution images instead? Meet the Super Mega Mega Toaster, a University project created by [Scott van Haastrecht] for his Creative Technology course.

Now you may be thinking that this has been done before. And indeed, a bit of searching will lead you to a post about toasting Jesus.  But that is a one-shot toaster hack which simply used a stencil to block heat to create a certain pattern. This is a mechanical overhaul for the toaster concept. It uses one row of six heating elements. Each is connected to a servo motor which moves the element next to the bread or away from it based on the pattering being printed. A stepper motor then moves the bread up so that the next row can be printed. All of this is mounted in a laser-cut wood frame which makes us just a bit nervous because the purpose of the elements is to burn stuff.

See a demo of the toaster, as well as its internal components in the clip after the jump.

Continue reading “Low-resolution Toaster Prints On Slices Of Bread”

Bakery Automation Mixes Single Cookies

bakery_automation

[Ben Krasnow’s] latest project is a delicious one. In the image above he’s showing off the beginnings of his cookie dispenser. No, it’s not another take on a way to eat Oreo cookies. It actually comes much earlier in the production chain. His device is akin to a 3D printer for baked goods in that it will be able to automatically combine raw ingredients to form production runs as small as a single serving of cookie dough.

When we first heard about it we wondered why you would want to bake just one cookie? But of course that’s not the purpose at all. The machine will allow you to bake a full sheet of cookies, but provides the option of making each one of them with a different recipe. As with all baking, combining ingredients in the proper proportions is paramount. In the post linked at the top he’s working on a butter dispenser. But in an earlier post he hacked an electronic scale to help weigh other ingredients. You can watch both video clips after the break.

Imaging a dozen cookies with slightly different amounts of flour in them. A few test sheets and he should be able to dial in the very best recipes.

Continue reading “Bakery Automation Mixes Single Cookies”