Mini Meters Monitor Microprocessor Maximization

[Lex] over at Computing: The Details loves to make fun projects. Recently, they have created a hardware CPU monitor that displays how PCs are parallelizing compile tasks at a glance. The monitor is built from 14 analog meters, along with some WS2812 RGB LEDs.

Each meter represents a core on [Lex]’s CPU, while the final two meters show memory and swap usage. The meters themselves are low-cost 5 mA devices. Of course, the original milliamps legends wouldn’t do much good, so [Lex] designed and printed graduations that glue over the top. The RGB LED strip is positioned so two LEDs fit under each meter. The LEDs allow a splash of color to draw attention to the current state of the machine. The whole bank going red would sure get our attention!

The system is controlled by an Arduino Mega, with the meters driven using the PWM pins. The only extra part is a 1 kΩ resistor. The Arduino wrangles the LEDs as well. Sadly [Lex] did not include the software. They did describe it though. Basically they are using a Rust program to call systemstat, obtaining the current CPU utilization data in Linux. A bit of math converts this into pointer values and LED colors. The data is then sent via USB-serial to the Arduino Mega. The software savvy will say it’s pretty easy to replicate, but the hardware-only hackers among us might need a bit of help.

This isn’t the first custom meter we’ve seen on Hackaday. Your author’s first project covered by Hackaday was for a meter created using an automotive gauge stepper motor. I didn’t include source code either – but only because [Guy Carpenter]’s Switec X25 library had me covered.

Continue reading “Mini Meters Monitor Microprocessor Maximization”

A Handheld Hackintosh, But So Much More

As handheld computing has solidified alongside everything else into the mobile phone, it’s sad that the once promising idea of a general purpose machine in the palm of the hand has taken a turn into the dumbed-down walled-garden offered by smartphone vendors. There was a time when it seemed that a real computer might be a common miniaturized accessory, but while it’s not really come to pass, at least [iketsj] has taken a stab at it. His handheld Hackintosh runs MacOS on a miniature scale, and looks rather nice.

At its heart is the LattePanda Alpha x86 single board computer, with a small custom expansion board  for a couple of buttons, a USB hub, a small keyboard, and a display. These parts are all mounted to a baseboard with metal stand-offs, and the power is sourced from a single USB-C socket at the bottom edge. What makes it more extraordinary is that it’s not the first handheld Hackintosh from this maker, the previous one being significantly bigger.

On one hand then, this is home-built PC like any other, assembled from off-the-shelf-parts. But on the other it’s far from normal, for despite its simplicity it forms a very usable small form factor device. The Akruvia Una keyboard uses tactile switches so maybe it’s not the machine to type your thesis on, but other than that it makes a great little machine for MacOS, Linux, or Windows. We like it, and we think you will too when you see the video below the break.

Continue reading “A Handheld Hackintosh, But So Much More”

Jenny’s Daily Drivers: RiscOS 5.28

On a mundane day at some point in late 1987, though I didn’t grasp exactly what it would become at the time, I sat in front of the future. My school had a lab full of BBC Micros which I’d spent the previous few years getting to know, but on that day there was a new machine in one corner. It was a brand-new Acorn Archimedes, probably an A300, and it was the first time I had used an operating system with a desktop GUI. The computer was the first consumer application of the ARM processor architecture which has since gone on to conquer the world, and the operating system was called Arthur, which hasn’t. That’s not to say that Arthur is forgotten though, because it was soon renamed as RiscOS, managed to outlive both Acorn and the Archimedes, and still survives as a maintained though admittedly niche operating system to this day. So my Daily Driver this month is the current generation of RiscOS, version 5.28, and the machine I’m running it on is a Raspberry Pi 4. For a computer with an ARM core that’s designed and sold by a company based in Cambridge just like the original Acorn, it’s the most appropriate pairing I can think of.

Probably the Smallest OS In This Series

A beige desktop with no monitor, keyboard and mouse in front. It shows signs of yellowing with age.
The first ARM product, an Acorn Archimedes A310. mikkohoo, CC BY-SA 4.0.

At one point the Raspberry Pi folks even featured the Pi version of RiscOS on their website, but for those missing it there it’s freely downloadable as a disk image from the RiscOS Open site. Having spent most of its life as a closed-source product it’s been opened up over the last decade, and you can grab the source if you’re interested. When it’s normal for an OS download to run into the many gigabytes, it’s a bit of a shock to grab one that’s a shade under 140 megabytes and can be written to a 2 gigabyte SD card. This makes it probably one of the quickest operating system installs I have ever done, with all steps completed in a very short time. Sticking the SD card into the Pi it boots to a desktop in about 32 seconds which is only 5 seconds less than the latest Raspberry Pi OS image, so sadly that compactness doesn’t net you any extra speed. Continue reading “Jenny’s Daily Drivers: RiscOS 5.28”

NEC V20 - Konstantin Lanzet, CC BY-SA 3.0 via Wikimedia Commons

Intel V. NEC : The Case Of The V20’s Microcode

Back in the last century, Intel saw itself faced with a need to have ‘second source’ suppliers of its 8088 and 8086 processors, which saw NEC being roped in to be one of those alternative suppliers to keep Intel’s customers happy with the μPD 8086 and μPD 8088 offerings. Yet rather than using the Intel provided design files, NEC reverse-engineered the Intel CPUs, which led to Intel suing NEC over copying the microcode that forms an integral part of the x86 architecture. In a recent The Chip Letter entry by [Babbage] this case is covered in detail.

Although this lawsuit was cleared up, and NEC licensed the microcode from Intel, this didn’t stop NEC from creating their 8086 and 8088 compatible CPUs in the form of the V30 and V20 respectively. Although these were pin- and ISA-compatible, the internal microcode was distinct from the Intel microcode due to the different internal microarchitecture. In addition the V20 and V30 also had a special 8080 mode, that provided partial compatibility with Z80 software.

Long story short, Intel sued NEC with accusations of copyright infringement of the microcode, which led to years of legal battle, which both set many precedents about what is copyrightable about microcode, and ultimately cleared NEC to keep selling the V20 and V30. Unfortunately by then the 1990s had already arrived, and sales of the NEC chips had not been brisk due to the legal issues while Intel’s new 80386 CPU had taken the market by storm. This left NEC’s x86-compatible CPUs legacy mostly in the form of legal precedents, instead of the technological achievements it had hoped for, and set the tone for the computer market of the 1990s.

Thanks to [Stephen Walters] for the tip.

BeagleV Catches Fire With The BeagleV-Fire

A new BeagleBoard is on the way, full of FPGA hotness: the BeagleV-Fire has been announced. The new $150 Single-Board Computer (SBC) from the pioneering open source BeagleBoard company is built around a RISC-V chip that has FPGA features built in. The BeagleV-Fire is built around the snappily named Microchip PolarFire MPFS025T FCVG484E, a System on a Chip (SoC) that has five Reduced Instruction Set Coding Version 5 (RISC-V) cores and a big chunk of FPGA fabric built in. That means it combines the speed of RISC-V processors with the flexibility of Field Programmable Gate Arrays (FPGA), a big pile of logic gates that can be reprogrammed.

The new BeagleV-Fire includes a sizeable chunk of FPGA to work with: the core chip includes 23 K logic elements and 68 Math blocks, plus 4 Serializer/Deserializer (SerDer) lanes that can throw about 12.7 Gbps of data into and out of the fabric. On the BeagleV-Fire, the main chip is supported by 16 GB of eMMC and 2 GB of LPDDR4 RAM, plus a micro SD slot for extra storage. Gigabit Ethernet is also included, plus USB-C power and a few serial connections for debugging. There is no WiFi built in, but there is an M.2 Key E connection were you could plug in an a wireless adapter if you need it.

Like most other BeagleBoards, the BeagleV-Fire has two headers with 92 pins, which offer access to pretty much every signal on the board, plus lots of analog to digital stuff that works with add-on boards (BeagleBoard refers to them as capes). Also present is the usual 22-pin CSI connector for attaching cameras and other devices.

Want one? They are available for immediate order on BeagleBoard.org or from the usual suspects. It looks like they are already in stock for next-day delivery. If this all sounds familiar, it’s probably because we’ve been posting about this particular board for awhile now, covering both the announcement and first tests. Continue reading “BeagleV Catches Fire With The BeagleV-Fire”

The Taylor and Amy Show

The Avon Computer Goth Challenge

Hot off the heels of their musical debut 6502 song the good folk at the Taylor and Amy Show are at it again. This time instead of assaulting our auditory senses, they play with our perception of color all while keeping the spirit of retro computing alive.

To back up a bit, I had the pleasure of witnessing the discovery of the Avon Beauty Vision Computer while at the Vintage Computer Festival Mid-West (VCFMW) this past September. We had visited the home of our friend [Jim W] from VCFMW who nonchalantly pulled down from the shelf the reddest computer I have ever seen.

A crowd quickly gathered at this newfound treat, designed and built before the invention of the Blue LED, was fallen upon and the process of prying out its secrets began. I was not privy to the negotiations, but I did notice a brightly colored red suitcase being exfiltrated by highly trained operatives later that night.

Continue reading “The Avon Computer Goth Challenge”

How Framework Laptop Broke The Hacker Ceiling

We’ve been keeping an eye on the Framework laptop over the past two years – back in 2021, they announced a vision for a repairable and hacker-friendly laptop based on the x86 architecture. They’re not claiming to be either open-source or libre hardware, but despite that, they have very much delivered on repairability and fostered a hacker community around the laptop, while sticking to pretty ambitious standards for building upgradable hardware that lasts.

I’ve long had a passion for laptop hardware, and when Hackaday covered Framework announcing the motherboards-for-makers program, I submitted my application, then dove into the ecosystem and started poking at the hardware internals every now and then. A year has passed since then, and I’ve been using a Framework as a daily driver, reading the forums on the regular, hanging out in the Discord server, and even developed a few Framework accessories along the way. I’d like to talk about what I’ve seen unfold in this ecosystem, both from Framework and the hackers that joined their effort, because I feel like we have something to learn from it.

If you have a hacker mindset, you might be wondering – just how much is there to hack on? And, if you have a business mindset, you might be wondering – how much can a consumer-oriented tech company achieve by creating a hacker-friendly environment? Today, I’d like to give you some insights and show cool things I’ve seen happen as an involved observer, as well as highlight the path that Framework is embarking upon with its new Framework 16.

Continue reading “How Framework Laptop Broke The Hacker Ceiling”