RIP Lynn Conway, Whose Work Gave Us VLSI And Much More

Lynn Conway, American engineer and computer scientist, passed away at the age of 86 from a heart condition on June 9th, at her Michigan home. Her work in the 1970s led to the integrated circuit design and manufacturing methodology known as Very Large Scale Integration, or VLSI, something which touches almost all facets of the world we live in here in 2024.

It was her work at the legendary Xerox PARC that resulted in VLSI, and its subsequent publication had the effect through the 1980s of creating a revolution in the semiconductor industry. By rendering an IC into a library of modular units that could be positioned algorithmically, VLSI enabled much more efficient use of space on the die, and changed the design process from one of layout into one of design. In simple terms, by laying out pre-defined assemblies with a computer rather than individual components by hand, a far greater density of components could be achieved, and more powerful circuits could be produced.

You may have also heard of Lynne Conway, not because of her VLSI work, but because as a transgender woman she found herself pursuing a parallel career as an activist in her later decades. As an MIT student in the 1950s she had tried to transition but been beaten back by the attitudes of the time, before dropping out and only returning to Columbia University to finish her degree a few years later in the early 1960s. A job at IBM followed, but when she announced her intent to transition she was fired from IBM and lost access to her family. Continue reading “RIP Lynn Conway, Whose Work Gave Us VLSI And Much More”

Scrapping The Local Loop, By The Numbers

A few years back I wrote an “Ask Hackaday” article inviting speculation on the future of the physical plant of landline telephone companies. It started innocently enough; an open telco cabinet spotted during my morning walk gave me a glimpse into the complexity of the network buried beneath my feet and strung along poles around town. That in turn begged the question of what to do with all that wire, now that wireless communications have made landline phones so déclassé.

At the time, I had a sneaking suspicion that I knew what the answer would be, but I spent a good bit of virtual ink trying to convince myself that there was still some constructive purpose for the network. After all, hundreds of thousands of technicians and engineers spent lifetimes building, maintaining, and improving these networks; surely there must be a way to repurpose all that infrastructure in a way that pays at least a bit of homage to them. The idea of just ripping out all that wire and scrapping it seemed unpalatable.

With the decreasing need for copper voice and data networks and the increasing demand for infrastructure to power everything from AI data centers to decarbonized transportation, the economic forces arrayed against these carefully constructed networks seem irresistible. But what do the numbers actually look like? Are these artificial copper mines as rich as they appear? Or is the idea of pulling all that copper out of the ground and off the poles and retasking it just a pipe dream?

Continue reading “Scrapping The Local Loop, By The Numbers”

8-Tracks Are Back? They Are In My House

What was the worst thing about the 70s? Some might say the oil crisis, inflation, or even disco. Others might tell you it was 8-track tapes, no matter what was on them. I’ve heard that the side of the road was littered with dead 8-tracks. But for a while, they were the only practical way to have music in the car that didn’t come from the AM/FM radio.

If you know me at all, you know that I can’t live without music. I’m always trying to expand my collection by any means necessary, and that includes any format I can play at home. Until recently, that list included vinyl, cassettes, mini-discs, and CDs. I had an 8-track player about 20 years ago — a portable Toyo that stopped working or something. Since then, I’ve wanted another one so I can collect tapes again. Only this time around, I’m trying to do it right by cleaning and restoring them instead of just shoving them in the player willy-nilly.

Update: I Found a Player

A small 8-track player and equally small speakers, plus a stack of VHS tapes.
I have since cleaned it.

A couple of weeks ago, I was at an estate sale and I found a little stereo component player and speakers. There was no receiver in sight. I tested the player with the speakers and bought them for $15 total because it was 75% off day and they were overpriced originally. While I was still at the sale, I hooked it up to the little speakers and made sure it played and changed programs.

Well, I got it home and it no longer made sound or changed programs. I thought about the play head inside and how dirty it must be, based on the smoker residue on the front plate of the player. Sure enough, I blackened a few Q-tips and it started playing sweet tunes again. This is when I figured out it wouldn’t change programs anymore.

I found I couldn’t get very far into the player, but I was able to squirt some contact cleaner into the program selector switch. After many more desperate button presses, it finally started changing programs again. Hooray!

I feel I got lucky. If you want to read about an 8-track player teardown, check out Jenny List’s awesome article. Continue reading “8-Tracks Are Back? They Are In My House”

Retrotechtacular: TVO

Hardware hackers come from a variety of backgrounds, but among us there remains a significant number whose taste for making things was forged through growing up in a farm environment. If that’s you then like me it’s probable that you’ll melt a little at the sight of an older tractor, and remember pretending to drive one like it at pre-school age, and then proudly driving it for real a few years later before you were smart enough to realise you’d been given the tedious job of repeatedly traversing a field at a slow speed in the blazing sun. For me those machines were Ford Majors and 5000s, Nuffields, the ubiquitous red Fergusons, and usually relegated to yard duty by the 1970s, the small grey Ferguson TE20s that are in many ways the ancestor of all modern tractors.

The Black Art Of Mixing Your Own Fuel

There was something odd about some of those grey Fergies in the 1970s, they didn’t run on diesel like their newer bretheren, nor did they run on petrol or gasoline like the family Austin. Instead they ran on an unexpected mixture of petrol and heating oil, which as far as a youthful me could figure out, was something of a black art to get right. I’d had my first encounter with Tractor Vapour Oil, or TVO, a curious interlude in the history of agricultural engineering. It brings together an obscure product of the petrochemical industry, a moment when diesel engine technology hadn’t quite caught up with the on-farm requirement, and a governmental lust for a lower-tax tractor fuel that couldn’t be illicitly used in a car.

TVO is a fuel with a low octane rating, where the octane rating is the resistance to ignition through compression alone. In chemical terms octane rating a product of how many volatile aromatic hydrocarbons are in the fuel, and to illustrate it your petrol/gasoline has an octane rating in the high 90s, diesel fuel has one close to zero, and TVO has a figure in the 50s. In practice this was achieved at the refinery by taking paraffin, or kerosene for Americans, a heavier fraction than petrol/gasoline, and adding some of those aromatic hydrocarbons to it. The result was a fuel on which a standard car engine wouldn’t run, but which would run on a specially low-compression engine with a normal spark ignition. This made it the perfect tax exempt fuel for farmers because it could only be used in tractors equipped with these engines, and thus in the years after WW2 a significant proportion of those Fergies and other tractors were equipped to run on it. Continue reading “Retrotechtacular: TVO”

Mining And Refining: Fracking

Normally on “Mining and Refining,” we concentrate on the actual material that’s mined and refined. We’ve covered everything from copper to tungsten, with side trips to more unusual materials like sulfur and helium. The idea is to shine a spotlight on the geology and chemistry of the material while concentrating on the different technologies needed to exploit often very rare or low-concentration deposits and bring them to market.

This time, though, we’re going to take a look at not a specific resource, but a technique: fracking. Hydraulic fracturing is very much in the news lately for its potential environmental impact, both in terms of its immediate effects on groundwater quality and for its perpetuation of our dependence on fossil fuels. Understanding what fracking is and how it works is key to being able to assess the risks and benefits of its use. There’s also the fact that like many engineering processes carried out on a massive scale, there are a lot of interesting things going on with fracking that are worth exploring in their own right.
Continue reading “Mining And Refining: Fracking”

The Tragic Story Of The Ill-Fated Supergun

In the annals of ambitious engineering projects, few have captured the imagination and courted controversy quite like Gerald Bull’s Supergun. Bull, a Canadian artillery expert, envisioned a gun that could shoot payloads directly into orbit. In time, his ambition led him down a path that ended in both tragedy and unfinished business.

Depending on who you talk to, the Supergun was either a new and innovative space technology, or a weapon of war so dangerous, it couldn’t be allowed to exist. Ultimately, the powers that be intervened to ensure we would never find out either way.

Continue reading “The Tragic Story Of The Ill-Fated Supergun”

Mapping The Human Brain And Where This May Lead Us

In order to understand something, it helps to observe it up close and study its inner workings. This is no less true for the brain, whether it is the brain of a mouse, that of a whale, or the squishy brain inside our own skulls. It defines after all us as a person; containing our personality and all our desires and dreams. There are also many injuries, disorders and illnesses that affect the brain, many of which we understand as poorly as the basics of how memories are stored and thoughts are formed. Much of this is due to how complicated the brain is to study in a controlled fashion.

Recently a breakthrough was made in the form of a detailed map of the cells and synapses in a segment of a human brain sample. This collaboration between Harvard and Google resulted in the most detailed look at human brain tissue so far, contained in a mere 1.4 petabytes of data. Far from a full brain map, this particular effort involved only a cubic millimeter of the human temporal cortex, containing 57,000 cells, 230 millimeters of blood vessels and 150 million synapses.

Ultimately the goal is to create a full map of a human brain like this, with each synapse and other structures detailed. If we can pull it off, the implications could be mind-bending.

Continue reading “Mapping The Human Brain And Where This May Lead Us”