The Space Shuttle has often been called the most complex pieces of machinery ever built, an underhanded compliment if there ever was one. But it’s a claim not strictly limited to the final spacecraft. With a project as far ahead of the technological curve as the Shuttle was in the 1970s, nearly every component and system of the legendary spaceplane required extensive research and development to realize.
A case in point is that the speed and mass of the Shuttle at touchdown required tires that could survive forces far beyond that of a normal airplane. Pumped up to an incredible 350 psi, the space agency estimated each tire had the explosive potential of two and one-half sticks of dynamite. So while testing landing gear upgrades in the 1990s, they cobbled together an RC tank that could “defuse” a damaged tire remotely by drilling holes into it and letting off the pressure. Continue reading “That Time NASA Built A Tiny Tank To Pop Shuttle Tires”→
It used to be a common expression to say that something would happen when “people walked on the moon.” That is, something that was never going to happen. Of course, by 1960, it was clear that someone was going to walk on the moon eventually. There were many other things everyone “knew” would happen in the future. Some of them came true, but many of them didn’t. Some, like video phones and robot factory workers, came true in a way, but not as people imagined. For example, people were confident that computers would easily translate between human languages, something we still have trouble doing entirely reliably. Another standard prediction is that people would control the weather.
Controlling the weather, in some ways, seems even less likely than walking on the moon. After all, we know where the moon is and where it will be. We still don’t understand precisely what causes the weather to behave the way it does. We have models and plenty of scientific theories. But you still can’t know exactly what’s going to happen, where, or when.
History
If you farm or live in a hut, weather is especially important. You want rain but not too much rain. Without scientific knowledge, many cultures had rain-making superstitions like a rain dance or other rituals meant to encourage rain. Some think that loud noises like cannon fire prevent hail. Charlatans would promise rain in exchange for donations.
However, science would eventually surface, and in the 1800’s James Espy — the first U.S. meteorologist — theorized that convection was what really caused rain. He had bold plans to set massive fires to encourage rain but could not convince Congress to go along.
Half a century later, Robert St. George Dyrenforth tested the effect of explosions on rainfall. There is no evidence that his cannon and fireworks did anything. He did, however, claim credit for any rain that happened to occur nearby. There have been many reports that explosions cause rain — rain often falls after a heated battle, apparently. The government in Thailand tried to induce rain using dry ice flakes dropped into clouds with, reportedly, some success. Abu Dhabi, Russia, and China’s governments claim to have working weather control today.
Neutrinos are some of the most elusive particles that are well-known to science. These tiny subatomic particles have no electric charge and an extremely small mass, making them incredibly difficult to detect. They are produced in abundance by the sun, as well as by nuclear reactions on Earth and in supernovae. Despite their elusive nature, scientists are keen to detect neutrinos as they can provide valuable information about the processes that produce them.
Neutrinos interact with matter so rarely that it takes a very special kind of detector to catch them in the act. These detectors come in a few different flavors, each employing its unique method to spot these elusive particles. In this article, we’ll take a closer look at how these detectors work and some of the most notable examples of neutrino detectors in the world today.
Last month, I had the pleasure witnessing a birth. No, not of a child. What I’m talking about is something far rarer, though arguably, just as loud and danger fraught — the birth of a new hacker convention.
The very first JawnCon took place on October 19th and 20th at Arcadia University, just outside of Philadelphia. If you’re in the Northeast US and suddenly find yourself surprised to learn that a hacker con managed to slip under your radar, don’t be. The organizers, who previously helped launch the WOPR Summit back in 2019, wisely decided to keep the scale of this first outing in check. Just a single track of talks, a chill out room, and 130 or like-minded individuals.
Although, even if they’d hatched a more ambitious plan, it’s hard to imagine they’d have had enough time to pull it off. Due to various circumstances, JawnCon had to come together at a breakneck pace, with less than 100 days separating the con’s inception and kickoff. That an event such as this could not only be organized so quickly, but go off without a hitch, is a testament to the incredible folks behind the scenes.
As for what a Jawn is…well, that might take a bit more explaining. It’s regional slang that’s perhaps best described as a universal noun in that it can be used to refer to basically anything or anyone. Think “smurf” or “da kine”. According to organizer Russell Handorf, the all-encompassing nature of the word describes not only his personal ethos but the spirit of the event. Rather than focusing too closely on any one aspect of hacking, JawnCon set out to explore a diverse array of tech topics from both the new and old schools. It would be an event where you could listen to a talk on payphone remote management, try your hand at lock picking, and learn about the latest in anti-drone technology, all under the same roof.
To that end, the team did an incredible job. Everyone I spoke to, young or old, newbie or vet, had a fantastic time. What’s more, as revealed in the Closing Remarks, the con actually managed to stay in the black — no mean feat for a first attempt. With a little luck, it seems like JawnCon is well on its way to becoming one of the Northeast’s can’t-miss hacker events. Continue reading “JawnCon 0x0: A Strong Start With A Bright Future”→
In my teenage years I worked for a couple of summers at a small amusement park as a ride operator. Looking back on it, the whole experience was a lot of fun, although with the minimum wage at $3.37 an hour and being subjected to the fickle New England weather that ranged from freezing rains to heat stroke-inducing tropical swelter, it didn’t seem like it at the time.
One of my assignments, and the one I remember most fondly, was running the bumper cars. Like everything else in the park, the ride was old and worn out, and maintenance was a daily chore. To keep the sheet steel floor of the track from rusting, every morning we had to brush on a coat of graphite “paint”. It was an impossibly messy job — get the least bit of the greasy silver-black goop on your hands, and it was there for the day. And for the first few runs of the day, before the stuff worked into the floor, the excited guests were as likely as not to get their shoes loaded up with the stuff, and since everyone invariably stepped on the seat of the car before sitting on it… well, let’s just say it was easy to spot who just rode the bumper cars from behind, especially with white shorts on.
The properties that made graphite great for bumper cars — slippery, electrically conductive, tenacious, and cheap — are properties that make it a fit with innumerable industrial processes. The stuff turns up everywhere, and it’s becoming increasingly important as the decarbonization of transportation picks up pace. Graphite is amazingly useful stuff and fairly common, but not all that easy to extract and purify. So let’s take a look at what it takes to mine and refine graphite.
Although it probably feels like forever to many of us since Category 5 Ethernet cabling became prevalent, now that 2.5 and even 5 Gbit Ethernet has trickled into the mainstream, a pertinent question that many probably end up asking, is when you should replace Cat-5e wiring with Cat-6, or even Cat-7. Since most of us are likely to use copper network wiring for the foreseeable future in our domiciles and offices, it is a good question that deserves a good answer. Although swapping a Cat-5e patch cable with a Cat-7 one between a network port and computer is easy enough, replacing all the network cable already pulled through the conduits of a ‘future-proofed’ home is not.
The good news is probably that Category 8 Class II (Cat-8.2) is all you need to run your 40 Gbit Ethernet network with standard twisted pair wiring. The bad news is that you’re limited to runs of only thirty meters before signal degradation begins to kick in. If you take things down a notch to Cat-6A or Cat-7 (ISO/IEC 11801 Class EA and F, respectively), you can do 100 meter runs at 10 Gbit/s just like 100 meters runs at 1 Gbit/s were possible with Cat-5e before. Yet what differentiates these categories exactly?
As one of the most famous Ancient Egyptian pyramids, the Pyramid of Khafre on the plateau of Giza has been a true wonder of the Ancient World ever since its construction around 2570 BCE. Today, well over 4,500 years later, we are still as puzzled as our ancestors over the past hundreds of years how exactly this and other pyramids were constructed. Although many theories exist, including ramps that envelop the entire pyramid, to intricate construction methods from the inside out, the only evidence we have left are these pyramids themselves.
This is where the jokingly called [History for Granite] channel on YouTube has now pitched some new ideas, involving the casing stones that used to fully cover the Pyramid of Khafre, prior to widespread theft and vandalism.
Bonding stones within the casing stones on the Pyramid of Khafre. (Credit: History for Granite, YouTube)
Despite the pyramids of Giza in particular being a veritable tourist trap, said tourists are heavily discouraged from climbing onto the pyramids, or even set up high-powered camera gear on tripods near them. Even with drone footage available, it was necessary to get a zoomed-in look on the casing stones that remain on the pyramid of Khafre near its top at well over 100 meters. Working within these limitations, it was possible to take detailed photos of three sides of the pyramid, which revealed interesting details.
In the top screenshot from the video the top of the pyramid is visible, which gives some indication of just how much the pyramid may have shifted out of alignment due to earthquakes over the millennia. This turned out to be not significant enough to account for some purported ‘gaps’ between the casing stones, with supposed ‘filler material’ from scaffolding holes explainable as just broken off sections of these casing stones. What was more interesting was that a pattern could be found in so-called bonding stones.
Pattern of bonding stones on the north face of the pyramid of Khafre. (Credit: History for Granite, YouTube)
These bonding stones have a slanted end, so that they can be lifted slightly above a matching slanted stone, before being lowered to complete a row of bricks or stonework. After analyzing the three faces of the still mostly intact casing stones, a clear pattern emerged, such as that on the north face, pictured here.
What this suggests is that each row of casing stones were laid down by multiple groups of workers, each starting at a specific point before coming together where those sections would be joined with a bonding stone. This lends credence to the theory that the pyramid was constructed layer by layer, including the outer covering. To further examine these clues, the even older Bent Pyramid at the royal necropolis of Dahshur with mostly intact casing stones will be examined in more detail next.
If anything this series shows just how much there still is that we don’t know about these massive construction projects that are really only preceded by the works of the Sumerian and Akkadian people.