3D Printed Basketball Could Be A Game Changer

Basketball has changed a lot over the years, and that goes for the sport as well as the ball itself. While James Naismith first prescribed tossing soccer balls into peach baskets to allow athletes to stay in shape over the winter, today, the sport looks quite different both rule-wise and equipment-wise.

An early basketball. Image via Wikipedia

The basketball itself has gone through a few iterations. After the soccer ball came a  purpose-built leather ball with stitches and a rubber bladder inside. The first molded version came in 1942, although most balls continued to be made of leather, especially for indoor-only use. Today, the NBA still uses leather-clad balls, but that could change. Wilson, the official supplier of NCAA postseason tournament balls, has developed a 3D-printed basketball that never needs to be inflated.

Much like a regular ball, the Wilson Airless Gen1 has eight lobes, bounces like you’d expect, and can be palmed, provided your hand is big enough. We would argue forcefully that it is far from airless, though we do get the point. According to TCT Magazine, the ball “nearly fits” the performance specs of a regular basketball, including weight, size, and rebound. This may not be good enough for the NBA today, but we doubt innovation over at Wilson has stopped abruptly, so who knows what the future holds?

Interested in trying one out? You may be better off trying to design and print one yourself. The limited-edition ball will be available on February 16th at Wilson.com for the low, low price of $2,500. It would probably pair well with the can’t-miss robotic hoop. Or, pair it with a giant 3D-printed hand for display purposes.

Main and thumbnail images via Wilson Sporting Goods

Minitel, The 1980s Console Game Platform You Never Had

We’ve made no secret over the years here at Hackaday of our admiration for the Minitel. The ubiquitous CRT terminals which made 1980s France the most connected country in the world never made it to where we grew up, but OH! how we wanted them to! We’ve seen quite a few Minitels repurposed as serial terminals here, but for the time being we think [Louis H] has won the Minitel Internet with his plugin game console cartridges. These have a DIN plug to fit the Minitel serial port, and present themselves as a serial game.

The cartridge itself is an extremely simple affair, a tube which fits over the DIN plug body, containing a slim PCB with an ATmega328 and its supporting components. The games must be programmed such that their gameplay can work over a serial interface, so as an example the first game is a version of 2048.

We applaud both the simplicity and creativity of this project, and we love it that a new 1980s console we never knew we had has been unearthed, without the need for hardware modification. Meanwhile if you’d like to peer inside an Alcatel Telic 1, we can take you there.

Revisiting A Z80 Game From 1990

Back in the days of 8-bit computers, like no doubt many readers of similar age, we wrote little games. First in BASIC, then augmented with little machine code speed-ups. We didn’t come close to [Óscar Toledo Gutiérrez] though, who’s reverse engineering a 2K all-machine-code game he wrote back in 1990. As a tale of software archaeology it’s fascinating.

The game itself is an avoid-the-monsters platformer with plenty of ladders for the little sprite-based protagonist to run down. The computer was a Mexican homebrew educational machine with a TMS9118 display chip and an AY-3-8910 synthesizer, so the result had both color and music. His run through the code breaks it down neatly into individual sections, so it’s possible to see what’s going on without an in-depth knowledge of machine code.

He readily admits it bears all the hallmarks of an 11-year-old’s knowledge at the time, and that it has some parts less elegant, but nevertheless it’s something of an achievement at any age. It was out of date gameplay-wise in 1990 but in 1982 it could probably have been bought on a tape by eager kids. Here in 2024 he’s got it for download should you have a Colecovision or an MSX. There’s a gameplay video below the break, take a look.

Continue reading “Revisiting A Z80 Game From 1990”

Tetris Goes Full Circle

As a game concept, Tetris gave humanity nearly four solid decades of engagement, but with the possibility for only seven possible puzzle pieces it might seem a little bit limiting. Especially now that someone has finally beaten the game, it could be argued that as a society it might be time to look for something new. Sinusoidal Tetris flips these limits on their head with a theoretically infinite set of puzzle pieces for an unmistakable challenge.

Like Tetris, players control a game piece as it slowly falls down the screen. Instead of blocks, however, the game piece is a sinusoid that stretches the entire width of the screen. Players control the phase angle, amplitude, and angular frequency in order to get it to cancel out the randomly-generated wave in the middle of the screen. When the two waves overlap, a quick bit of math is done to add the two waves together. If your Fourier transformation skills aren’t up to the task, the sinusoid will eventually escape the playing field resulting in a game over. The goal then is to continually overlap sinusoids to play indefinitely, much like the original game.

While we’re giving Tetris a bit of a hard time, we appreciate the simplicity of a game that’s managed to have a cultural impact long after the gaming systems it was originally programmed for have become obsolete, and this new version is similar in that regard as well. The game can be quite addictive with a lot to take in at any given moment. If you’re more interested in the programming for these types of games than the gameplay, though, take a look at this deep-dive into Tetris for the NES.

Swapping Nunchucks For A Steering Wheel

Rather than chasing pure performance and high quality graphics like other gaming companies, Nintendo has made a name for themselves over the last few decades by favoring not only artistic design and gameplay, but the physical design of the game systems. Of course the hybrid handheld Switch console is among these, but it also includes things like the novel design of the Nintendo 64 controller and, of course, the Wii nunchuck controllers. They’re not always met with resounding approval, though. Some of us tend to prefer more traditional gamepad design, and will go to extreme lengths to get it like this D-pad for playing Mario Kart Wii.

Rather than simply building a compatible controller for the Wii, or even using a GameCube controller, this controller setup takes a more roundabout approach. A Wiimote is placed in a holster built from Lego, and the game is set up to recognize it as if it were being used in its steering wheel mode. The Lego holster has a servo attached which can tilt the Wiimote from side to side, mimicking a player holding it to play the game, with another set of servos set up to press the various buttons. To control the controller, a homebrew D-pad built on perfboard with an Arduino at its core is used to send commands to the servos, allowing for a more standard controller layout to be used for the classic kart racing game than the steering wheel Wiimote allows.

While it’s quite obvious that there are simpler, easier solutions that avoid the sometimes awkward nature of using Wiimotes, we certainly appreciate the Rube Goldberg-like approach to setting up your gaming experience exactly the way you like. Whether that’s setting up an antique CRT effect for the authentic retro gaming experience or building a complete racing simulator from scratch, the gaming experience is ripe for personalization and unique builds like this one.

Continue reading “Swapping Nunchucks For A Steering Wheel”

Simon Says With An RP2040

The team of [Michael] and [Chimdi] from Cornell’s Designing with Microcontrollers (ECE 4760) Fall 2023 session designed a version of Simon Says on an RP2040 which they call Pico Says. It uses UDP packets over WiFi to communicate between the players, and supports VGA graphics for output. Each player’s hardware consists of a Pico W module plus a control panel containing the four LEDs and buttons ( red, green, yellow, and blue ) plus send and reset buttons.

For purposes of this lab, the modules were build on a solderless breadboard and used perfboard for the control panels. They weren’t entirely happy with their choice of UDP because they experienced frequent datagram dropouts in the noisy environment of the microcontroller lab. They also planned to implement sound effects, but ran out of time after spending too much time on the WiFi implementation, and had to drop that feature. In the end, however, they wrapped up their project and demonstrated a working game. We can only speculate whether this bonus lesson in resource management was intended by [Dr. Hunter Adams] or not.

Two ECE 4760 course references are highlighted in the write-up that helped them jump-start the project: the UDP and VGA examples for the Pico. These are good links to put in your RP2020 toolbox for future projects, in addition to the ECE 4760 course home page itself. We’ve covered several of these projects recently, as well as the curriculum switch from the Microchip PIC32MX-based Microstick II to the RP2040 last Spring.

Continue reading “Simon Says With An RP2040”

Don’t Panic: A Cooperative Bomb Defusing Game

[Heath Paddock] wanted to confound his friends with a game that mimics an escape room in a box. About six months after starting, he had this glorious thing completed. It’s a hardware version of a game called Keep Talking and Nobody Explodes where players have five minutes to defuse a suitcase bomb. This implementation requires at least two players, one with the box-bomb itself, and one who holds all the knowledge but can’t see the box-bomb to defuse it.

The wiring of the Mastermind module.

[Heath]’s version has twice as many modules as the original game, each hand-wired one driven by an Arduino. One of the modules is an LED maze. There are two green anchor LEDs in one of six configurations, and and blue and a red LED.

The object is to move the blue LED next to the red one without touching any walls. Of course, the box-holder can’t see the walls and must describe the configuration of the anchor LEDs to their partner in order to get started.

All of the modules are quite different, which likely makes for an extremely fun and challenging five minutes. [Heath] reports that getting inter-module communication down was a long road. Eventually, [Heath] settled on a mesh network configuration and connected everything in a big loop. Be sure to check out the walk-through video after the break.

This isn’t the first time we’ve seen a hardware implementation of this game. Here’s one that uses a Raspberry Pi.

Continue reading “Don’t Panic: A Cooperative Bomb Defusing Game”