Running FreeDOS And 8086tiny On The Game Boy Advance Because You Can

How many people haven’t looked at their Game Boy Advance (GBA) handheld gaming device and wondered how much better it might be if it could run FreeDOS. Inside an 8086 emulator. If you’re like [ZZAZZ] and similarly suffer intrusive project-related thoughts, then this might be a moment of clear recognition, somewhat like sharing one’s story at a Programmers Anonymous meeting, but we digress.

In the video, the basic premise of making even the 8086tiny emulator work on the GBA seemed improbable on the outset – courtesy of the rather limited memory environment provided by the GBA – before even daring to look at things like disk access.

However, letting silly things like segmented memory and mismatched memory addresses deter us from pleasing said intrusive thoughts would be beyond the pale. Ergo we get a shining example of how days of rewriting code, stripping code, debugging code, fixing alignment issues in code and writing work-arounds for newly discovered issues in code can ultimately lead to the proud moment where FreeDOS boots on the GBA.

Granted it takes over an hour to do so, and has to be started from a butchered Pokémon Emerald save file, courtesy of a well-known exploit in that game, thankfully preserved in counterfeit cartridges.

Admittedly we’re not sure what practical applications there are for FreeDOS on the GBA, but that’s never stopped hackers from taking on impossible projects before, so there’s no sense letting it get in the way now.

Continue reading “Running FreeDOS And 8086tiny On The Game Boy Advance Because You Can”

The Blackberry Keyboard: How An Open-Source Ecosystem Sprouts

What could happen when you open-source a hardware project?

No, seriously. I hold a fair few radical opinions – one is that projects should be open-source to the highest extent possible. I’ve seen this make miracles happen, make hackerdom stronger, and nourish our communities. I think we should be publishing all the projects, even if incomplete, as much as your opsec allows. I would make ritual sacrifices if they resulted in more KiCad projects getting published, and some days I even believe that gently bullying people into open-sourcing their projects can be justified. My ideal universe is one where companies are unable to restrict schematics from people getting their hardware, no human should ever hold an electronics black box, by force if necessary.

Why such a strong bias? I’ve seen this world change for the better with each open-source project, and worse with closed-source ones, it’s pretty simple for me. Trust me here – let me tell you a story of how a couple reverse-engineering efforts and a series of open-source PCBs have grown a tree of an ecosystem.

A Chain Of Blackberry Hackers

Continue reading “The Blackberry Keyboard: How An Open-Source Ecosystem Sprouts”

An Awful 1990s PDA Delivers AI Wisdom

There was a period in the 1990s when it seemed like the personal data assistant (PDA) was going to be the device of the future. If you were lucky you could afford a Psion, a PalmPilot, or even the famous Apple Newton — but to trap the unwary there were a slew of far less capable machines competing for market share.

[Nick Bild] has one of these, branded Rolodex, and in a bid to make using a generative AI less alluring, he’s set it up as the interface to an LLM hosted on a Raspberry Pi 400. This hack is thus mostly a tale of reverse engineering the device’s serial protocol to free it from its Windows application.

Finding the baud rate was simple enough, but the encoding scheme was unexpectedly fiddly. Sadly the device doesn’t come with a terminal because these machines were very much single-purpose, but it does have a memo app that allows transfer of text files. This is the wildly inefficient medium through which the communication with the LLM happens, and it satisfies the requirement of making the process painful.

We see this type of PDA quite regularly in second hand shops, indeed you’ll find nearly identical devices from multiple manufacturers also sporting software such as dictionaries or a thesaurus. Back in the day they always seemed to be advertised in Sunday newspapers and aimed at older people. We’ve never got to the bottom of who the OEM was who manufactured them, or indeed cracked one apart to find the inevitable black epoxy blob processor. If we had to place a bet though, we’d guess there’s an 8051 core in there somewhere.

Continue reading “An Awful 1990s PDA Delivers AI Wisdom”

EclairM0

EclairM0, The Pocket Notepad

Roughly the size of a Tic Tac container, this project packs a punch in a compact package. [Matt] sent in this beautifully documented pocket device that brings back great memories of texting on early cellphones.

The EclairM0’s firmware is written in TinyGo, a language he hadn’t used before but found perfect for a microcontroller project where storage space is tight. The 14-button input mimics early phone keypads, using multi-tapping and combo key presses to offer various functions. The small SSD1306 OLED display is another highlight. Building on an earlier CircuitPython project, [Matt] optimized the screen’s performance, speeding up its response time for a snappy user experience. The battery picked was only 3 mm thick, however the protection circuity on the battery added another 2 mm so he moved that protection circuity to the main PCB itself to keep it as thin as initially planned.

Weighing just 15 grams, this lightweight device runs on a SAMD21 microcontroller, which supports USB host functionality. This allows the EclairM0 to act as a keyboard, mouse, or even USB peripherals. Housed in a 3D-printed case, the entire project is open-source, with design and firmware files available on GitHub.

We love small handheld projects around here and this well-documented, fun pocket device is no exception, if you want your own he has a page dedicated to helping you build a EclairM0.

Continue reading “EclairM0, The Pocket Notepad”

EInk PDA Revisited

In the dark ages, before iOS and Android phones became ubiquitous, there was the PDA. These handheld computers acted as simple companions to a computer and could often handle calendars, email, notes and more. Their demise was spelled by the smartphone, but the nostalgia of having a simple handheld and romanticizing about the 90’s and 2000’s is still there. Fortunately for the nostalgic among our readers, [Ashtf] decided to give us a modern take on the classic PDAs.

Continue reading “EInk PDA Revisited”

Self-Hosting A Cluster On Old Phones

The phones most of us carry around in our pockets every day hold a surprising amount of computing power. It’s somewhat taken for granted now that we can get broadband in our hands in most places; so much so that when one of these devices has reached the end of its life it’s often just tossed in a junk drawer even though its capabilities would have been miraculous only 20 years ago. But those old phones can still be put to good use though, and [Denys] puts a few of them back to work running a computing cluster.

Perhaps the most significant flaw of smartphones, though, is that most of them are locked down so much by their manufacturers that it’s impossible to load new operating systems on them. For this project you’ll need to be lucky enough (or informed enough) to have a phone with an unlockable bootloader so that a smartphone-oriented Linux distribution called postmarketOS can be installed. With this nearly full-fledged Linux distribution to work from, the phones can be accessed by ssh and then used to run Kubernetes for the computing cluster. [Denys] has three phones in his cluster that run a few self-hosted services for him.

[Denys] also points out in his guide that having a phone that can run postmarketOS might save some money when compared to buying a Raspberry Pi to run the same service, and the phones themselves can often be more powerful as well. This is actually something that a few others have noted in the past as well. He’s gone into a considerable amount of detail on how to set this up, so if you have a few old smartphones gathering dust, or even those with broken screens or other physical problems where the underlying computing resources are still usable, it’s a great way to put these machines back to work.

Thanks to [mastro Gippo] for the tip!

Handheld Console Plays Original Pong With Modern E-Waste

[Simon] wrote in to let us know about DingPong, his handheld portable Pong console. There’s a bit more to it than meets the eye, however. Consider for a moment that back in the 1970s playing Pong required a considerable amount of equipment, not least of which was dedicated electronics and a CRT monitor. What was huge (in more than one way) in the 70s has been shrunk down to handheld, and implemented almost entirely on modern e-waste in the process.

The 1970s would be blown away by a handheld version of Pong, made almost entirely from salvaged components.

DingPong is housed in an old video doorbell unit (hence the name) and the screen is a Sony Video Watchman, a portable TV from 1982 with an amazing 4-inch CRT whose guts [Simon] embeds into the enclosure. Nearly everything in the build is either salvaged, or scrounged from the junk bin. Components are in close-enough values, and power comes from nameless lithium-ion batteries that are past their prime but still good enough to provide about an hour of runtime. The paddle controllers? Two pots (again, of not-quite-the-right values) sticking out the sides of the unit, one for each player.

At the heart of DingPong one will not find any flavor of Arduino, Raspberry Pi, or ESP32. Rather, it’s built around an AY-3-8500 “Ball & paddle” (aka ‘Pong’) integrated circuit from 1977, which means DingPong plays the real thing!

We have seen Pong played on a Sony Watchman before, and we’ve also seen a vintage Pong console brought back to life, but we’re pretty sure this is the first time we’ve seen a Sony Watchman running Pong off a chip straight from the 70s. Watch it in action in the video (in German), embedded below.

Continue reading “Handheld Console Plays Original Pong With Modern E-Waste”