3D Printed Parts Keep Respirators Operational During COVID-19 Epidemic

COVID-19 can seem like a paper tiger, when looking at bare mortality rates. The far greater problem is the increase in fatalities as health systems are stretched to the limit. With thousands of patients presenting all at once, hospitals quickly run out of beds and resources and suddenly, normally survivable conditions become life threatening. One Italian hospital found themselves in such a position, running out of valves for a critical respirator device needed to save their patients. Supplies were running out – but additive manufacturing was able to save the day.

The original part, left, with its 3D-printed replacement.

While the article uses the term “reanimation device”, it’s clear we’re talking about respirators here, necessary to keep patients alive during respiratory distress. The valve in question is a plastic part, one which likely needs to be changed over when the device is used with each individual patient to provide a sterile flow of air. After the alarm was raised by Nunzia Vallini, a local journalist, a ring around of the 3D printing community led to a machine being sent down to the hospital and the parts being reproduced. Once proven to work, things were stepped up, with another company stepping in to produce the parts in quantity with a high-quality laser fusion printer.

It’s a great example of 3D printers being used to produce actual useful parts, and of the community coming together to do vital lifesaving work. We’ve seen the technology come in clutch in the medical field before, too. Stay safe out there, and live to hack another day.

Thanks to [Jarno Burger], [LuigiBrotha], and [Michael Hartmann] for the tips!

Hearing Aid Reads Your Mind

If you’ve ever seen an experienced radio operator pull a signal out of the noise, or talked to someone in a crowded noisy restaurant, you know the human brain is excellent at focusing on a particular sound. This is sometimes called the cocktail party effect and if you wear a hearing aid, this doesn’t work as well because the device amplifies everything the same. A German company, Fraunhofer, aims to change that. They’ve demonstrated a hearing aid that uses EEG sensors to determine what you are trying to hear. Then it uses that information to configure beamforming microphone arrays to focus in on the sound you want to hear.

In addition to electronically focusing sound, the device stimulates your brain using transcranial electrostimulation. A low-level electrical signal tied to the audio input directly stimulates the auditory cortex of your brain and reportedly improves intelligibility.

Continue reading “Hearing Aid Reads Your Mind”

Augmented Reality Aids In The Fight Against COVID-19

“Know your enemy” is the essence of one of the most famous quotes from [Sun Tzu]’s Art of War, and it’s as true now as it was 2,500 years ago. It also applies far beyond the martial arts, and as the world squares off for battle against COVID-19, it’s especially important to know the enemy: the novel coronavirus now dubbed SARS-CoV-2. And now, augmented reality technology is giving a boost to search for fatal flaws in the virus that can be exploited to defeat it.

The video below is a fascinating mix of 3D models of viral structures, like the external spike glycoproteins that give coronaviruses their characteristic crown appearance, layered onto live video of [Tom Goddard], a programmer/analysts at the University of California San Francisco. The tool he’s using is called ChimeraX, a molecular visualization program developed by him and his colleagues. He actually refers to this setup as “mixed reality” rather than “augmented reality”, to stress the fact that AR tends to be an experience that only the user can fully appreciate, whereas this system allows him to act as a guide on a virtual tour of the smallest of structures.

Using a depth-sensing camera and a VR headset, [Tom] is able to manipulate 3D models of the SARS virus — we don’t yet have full 3D structure data for the novel coronavirus proteins — to show us exactly how SARS binds to its receptor, angiotensin-converting enzyme-2 (ACE-2), a protein expressed on the cell surfaces of many different tissue types. It’s fascinating to see how the biding domain of the spike reaches out to latch onto ACE-2 to begin the process of invading a cell; it’s also heartening to watch [Tom]’s simulation of how the immune system responds to and blocks that binding.

It looks like ChimeraX and similar AR systems are going to prove to be powerful tools in the fight against not just COVID-19, but in all kinds of infectious diseases. Hats off to [Tom] and his team for making them available to researchers free of charge.

Continue reading “Augmented Reality Aids In The Fight Against COVID-19”

Ultimate Medical Hackathon: How Fast Can We Design And Deploy An Open Source Ventilator?

[Gui Cavalcanti], whose name you might recognize from MegaBots, got on a call with a medical professional in San Francisco and talked about respirators. The question being, can we design and deploy an open source version in time to help people?

Unnerving reports from Italy show that when the virus hits the susceptible population groups the device that becomes the decider between life and death is a ventilator. Unfortunately they are in short supply.

The problem gets tricky when it comes to what kind of respirator is needed CPAP, BIPAP, or Hi-Flo oxygen NIV are all out. These systems aerosolize the virus making it almost guaranteed that anyone around them will get infected.

What we need is a Nasal cannula-based NIV. This system humidifies air, mixes it with oxygen and then pushes a constant stream of it into people’s lungs.  If we can design a simple and working system we can give those plans to factories around the globe and get these things made. If the factories fail us, let’s also have a version people can make at home.

If you aren’t sure if a ventilator is something you can work on there are other problems. Can you make algorithms to determine if a person needs a ventilator. Can we recycle n95 masks? Can we make n95 masks at home? Workers also require a negative pressure tent for housing patients. This will be especially useful if we need to build treatment facilities in gyms or office spaces. Lastly if you’re a medical professional, can you train people how to help?

Let’s beat this thing. The ultimate medical hackathon begins.

Open-Source Collaboration Tackles COVID-19 Testing

When you think of open source, your mind likely jumps to projects such as Linux, Firefox, and other now-mainstream software. The ideals of the movement are applicable to other areas, too, however – and a group have come together to pool resources to tackle the COVID-19 pandemic.

The group has formed around Just One Giant Lab, a non-profit organisation operating out of Paris, France. They aim to create an open platform for scientific collaboration on a broad range of issues facing humanity. The current project aims to create an open-source method for safely testing for COVID-19 infection, in an attempt to help better manage cases popping up around the world.

Thus far, the group has collected a variety of resources and begun to host conference calls discussing best practices for testing for the virus. There’s discussion of various PCR assays and virus sequences that are all useful in detecting the virus, along with data from WHO reports in China. The current state of play has been boiled down in the lab notebook the group has prepared, available online.

It’s inspiring to see open-source ideals put to work in new arenas outside computer software. Time will tell if this is the new way forward, but it certainly can’t hurt to have more minds tackling the problems of today and tomorrow.

A Reminder Not To Touch Your Face

In 2020, the world is focused on the rampant spread of a new virus by the name of COVID-19. Like many infectious diseases, transmission can be reduced by good hygiene practices. To help in the fight, [Nick Bild] threw together a device he calls Sentinel.

The concept is simple. Reduce the user touching their own face by shining a warning light when such behaviour is detected. This is achieved through the use of an Arduino, which controls an LED through feedback from an ultrasonic proximity sensor. The LED is placed in the user’s peripheral vision, glowing when the sensor detects hands (or other objects) approaching the face.

While it’s unlikely to be rolled out en-masse, it’s a project that nevertheless reminds us to practice good self-care routines. And, as the adage goes, prevention is better than cure. As governments and industry grapple with the ongoing problem, consider how your supply chain may be exposed to the crisis. Video after the break.

Continue reading “A Reminder Not To Touch Your Face”

3D Printing Skin Or Maybe A Dermal Regenerator

In space — at least on Star Trek — no one can hear you apply a band-aid. That’s too low tech. When a Star Fleet officer gets an ouchie, the real or holographic doctor waves a dermal regenerator over the afflicted area, and new skin magically appears. Science fiction, huh? Maybe not. A group of scientists from Canada recently published a paper on a handheld instrument for depositing “skin precursor sheets” over full-thickness burns. The paper is behind a paywall and if you don’t know how to get it or don’t want to get it, you can see a video from the University of Toronto, below.

Although they use the term 3D printing, the device is more like a paint roller. Several substances merge together in the print head and lay down on the burn in broad stripes.

Continue reading “3D Printing Skin Or Maybe A Dermal Regenerator”